

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Doctor

KoHPCG – High-Performance Conjugate

Gradient Benchmark Program on Kokkos

Performance Portability Framework

KoHPCG - 이기종 환경에서 성능 이식성을

보장하는 Kokkos 프레임워크 기반의

HPCG 벤치마크 프로그램

June 2025

Department of Computer Science and Engineering

Graduate School of Soongsil University

MUHAMMAD RIZWAN

Thesis for the Degree of Doctor

KoHPCG – High-Performance Conjugate

Gradient Benchmark Program on Kokkos

Performance Portability Framework

KoHPCG - 이기종 환경에서 성능 이식성을

보장하는 Kokkos 프레임워크 기반의 HPCG

벤치마크 프로그램

June 2025

Department of Computer Science and Engineering

Graduate School of Soongsil University

MUHAMMAD RIZWAN

KoHPCG – High-Performance Conjugate

Gradient Benchmark Program on Kokkos

Performance Portability Framework

Thesis Supervisor: Prof. Dr. Jaeyoung Choi

Thesis submitted in partial fulfillment of the requirements

for the Degree of Doctor

June 2025

Department of Computer Science and Engineering

Graduate School of Soongsil University

Thesis for the Degree of Doctor

MUHAMMAD RIZWAN

ACKNOWLEDGEMENT

First and foremost, all praise is due to Almighty Allah, the Most Merciful and the

Most Compassionate, who granted me the strength, patience, and perseverance to

complete this endeavor. Without His divine guidance andmercy, this milestone would

not have been possible.

This dissertation stands as a testament not only to individual effort, but to the

unwavering support and inspiration of many remarkable individuals around me. I am

deeply grateful to my supervisor, Dr. Jaeyoung Choi, for his invaluable guidance,

insightful feedback, and continuous encouragement throughout my PhD journey. His

mentorship, marked by both professionalism and kindness, has been a cornerstone of

my academic growth.

I would like to express my heartfelt thanks to my committee members for their

constructive suggestions and support. My appreciation also goes to all lab mates

and alumni, whose contributions created a stimulating and collaborative research

environment.

Special thanks go to all my teachers who laid the foundation for my academic

journey. I am equally grateful to all individuals—named or unnamed—who supported

me directly or indirectly with their encouragement, assistance, and prayers.

I extend my sincerest gratitude to my parents and family members, whose love,

patience, and unwavering belief in me have been the cornerstone of my motivation.

I also want to acknowledge the friendship and solidarity of my fellow countrymen

as well as friends from around the world, who brought joy and perspective into this

journey with their diverse experiences.

Finally, to all those who helped me along the way, even if your name is not listed

here, please accept my deepest thanks. Your support was valuable and will always be

remembered.

Date: June 2025 MUHAMMAD RIZWAN

TABLE OF CONTENTS

ABSTRACT IN ENGLISH . xi

ABSTRACT IN KOREAN . xiii

CHAPTER 1. Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 4

1.3 Research Objectives and Contributions 5

1.4 Thesis Organization . 6

CHAPTER 2. Background 8

2.1 HPCG . 8

2.1.1 Preconditioned Conjugate Gradient Method 8

2.1.2 HPCG Execution Flow Process 10

2.1.3 Problem Setup in HPCG . 12

2.1.4 Properties . 14

2.1.5 Optimization Constraints . 15

2.1.6 Core Kernels in HPCG . 18

i

2.2 Kokkos EcoSystem . 22

2.2.1 Programming Model . 23

2.2.2 Packages/Repositories . 25

CHAPTER 3. Literature Review 27

3.1 HPCG Optimization Techniques . 27

3.1.1 CPU-Based Systems . 28

3.1.2 GPU-Based Systems . 36

3.1.3 Hybrid Architectures . 37

3.1.4 Other Architectures and Environments 39

3.1.5 HPCG Benchmark Implementation Variants 41

3.1.6 Summary . 43

3.1.7 Supplementary Influential Works 44

CHAPTER 4. Technique and Trends in HPCG 46

4.1 Data Formats and Storage Strategies 46

4.1.1 Common Sparse Matrix Formats 46

4.1.2 Novel Data Structures for HPCG 48

4.2 Parallelization Optimization Techniques 50

4.2.1 Coloring . 50

4.2.2 Multi Level Task Dependency Graph 55

4.2.3 Hyperplane . 56

ii

4.2.4 Hierarchical Grid (HG) . 56

4.2.5 Two-level Blocking Scheme . 57

4.2.6 Block Multi-Color Scheduling (BMC) Scheduling 58

CHAPTER 5. Parallel Implementation of Symmetric

Gauss–Seidel (SymGS)Variants 61

5.1 Reference SymGS and its parallel variants 61

5.2 Our Designed Variants . 63

5.2.1 Temporal Block SymGS . 63

5.2.2 Over Relaxation SymGS . 63

5.2.3 Wavefront SymGS . 67

5.3 Experiments and Results . 68

5.3.1 Methodology . 68

5.3.2 Settings . 69

5.3.3 Performance metrics . 70

5.3.4 Results on Knights Landing (KNL) 72

5.3.5 Results on Skylake (SKL) . 81

5.4 Observations and Discussion . 86

5.4.1 Parallelism . 87

iii

CHAPTER 6. KoHPCG – High-Performance

Conjugate Gradient Benchmark Program on Kokkos

Performance Portability Framework 90

6.1 Kokkos-Based Implementation . 91

6.2 Experiments and Results . 94

6.2.1 Experimental Setup . 94

6.2.2 Results on Knights Landing (KNL) 95

6.2.3 Results on Skylake Scalable Processor (SKL) 98

6.2.4 Results on GPU Based System . 100

CHAPTER 7. Conclusion 101

7.1 Future Research Directions . 102

REFERENCES 103

iv

LIST OF TABLES

3.1 HPCG benchmark variants and implementation references 42

4.1 Common sparse matrix data formats 47

4.2 Data formats reported in literature of the HPCG optimization 49

5.1 Performance comparison of SymGS variants on KNL 74

5.2 Performance comparison of SymGS variants on SKL 82

v

LIST OF FIGURES

2.1 HPCG execution process flow . 11

2.2 27 point stencil in HPCG . 12

2.3 Geometric multigrid V-cycle in HPCG 22

2.4 Kokkos ecosystem overview . 23

4.1 Data formats illustration . 46

4.2 Multi-coloring . 51

4.3 Red-Black coloring . 52

4.4 Block multi-coloring . 53

4.5 Algebraic block multi-coloring . 54

4.6 Multi-level task dependency graph 55

4.7 Hyperplane (2D) . 56

4.8 A two-level blocking scheme . 58

4.9 Block multi-coloring with synchronization sparsification 60

5.1 Execution flow of SymGS variants and HPCG 69

5.2 Performance comparison of SymGS variants on 1 MPI process . . . 75

vi

5.3 Performance of HPCG using different SymGS variants on KNL . . 76

5.4 Performance and Bandwidth Summary of HPCG 78

5.5 Performance comparison of (a)MG (Multigrid) and (b)HPCG on KNL 80

5.6 SymGS variants and their impact in HPCG on SKL 82

5.7 Performance of MG and HPCG on multi-node SKL 84

6.1 Performance comparison of HPCG variants on KNL 96

6.2 KoHPCG vs. Reference HPCG on multi-node Intel KNL 97

6.3 Performance for SpMV, MG, and HPCG on Intel SKL 98

vii

GLOSSARY

ABMC Algebraic Block Multi-Coloring
ADB Assignable Data Buffer
ALP ALP/GraphBLAS programming framework
AMD Advanced Micro Devices
AVL Architectural Vector Length
BMC Block Multi-Coloring
BFS Breadth-First Search
CG Conjugate Gradient
COO Coordinate
CSC Compressed Sparse Column
CSCS Swiss National Supercomputing Centre
CPE Core Processing Elements
CPU Central Processing Unit
CSR Compressed Sparse Row
CU Compute Unit

CUDA Compute Unified Device Architecture
cuSPARSE CUDA Sparse Matrix library
DDOT Double-precision DOT product
DDR Double Data Rate (synchronous DRAM memory)
DIA Diagonal format

DOACROSS A type of loop optimization technique
DSCR Data Stream Control Register
ELL ELLPACK
FPGA Field-Programmable Gate Array

viii

GPU Graphics Processing Unit
GS Gauss-Seidel
HBM High Bandwidth memory
HG Hierarchical Grid

HIP
Heterogeneous-Compute Interface Library for
Portability

HPC High-Performance Computing
HPL High-Performance Linpack
HPCG High-Performance Conjugate Gradient
HPGMG High Performance Geometric Multigrid

IA Intel Architecture
IBM International Business Machines
JAD Jagged Diagonal format Machines

KHPCG Kokkos based HPCG Benchmark
KNL Xeon Phi Intel Knights Landing

KOKKOS A performance portable programming library
LDM Local Device Memory
LS Level Scheduling
MC Multi-Coloring
MIC Many Integrated Core
MGM Multigrid Method
MGPCG Multi-Grid Preconditioned Conjugate Gradient
MKL Math Kernel Liberary
MPE Management Processing Elements
MPI Message Passing Interface
NDP Near-Data Processors

NEC VE
NEC Vector Engine, A high-performance vector
processor architecture developed by NEC
Corporation

NVIDIA A GPU manufacturer and designer company
NUMA Non-uniform memory access
OpenMP Open Multi-Processing

ix

ORNL Oak Ridge National Laboratory
PCG Preconditioned Conjugate Gradient
PDE Partial Differential Equation
PE Processing Element
RB Red-Black Coloring

RBGS Red-Black Gauss-Seidel

RISC-V
Reduced Instruction Set Computing – V (fifth
open-ISA generation)

Rmax Maximum Measured Performance
ROCm Radeon Open Compute
Rpeak Peak Performance

SELLPACK A slieced variant of ELLPACK data format
SIMD Single Instruction Multiple Data
SpMV Sparse Matrix-Vector Multiplication
SVE Scalable Vector Extension

SymGS Symmetric Gauss-Seidel
SX-ACE A vector parallel processor
SYCL Standard C++ for Heterogeneous Computing
SKL Intel Skylake processors

TOP500 A project ranks most powerful supercomputers
UMBC University of Maryland, Baltimore County
VE Vector Engine
VPU Vector Processing Unit

WAXPBY
Weighted A times X plus B times Y vector
operation.

Xilinx
Xilinx is the company name (now owned by
AMD), pioneer in FPGA technology

x

ABSTRACT

KoHPCG – High-Performance Conjugate Gradient
Benchmark Program on Kokkos Performance

Portability Framework

MUHAMMAD RIZWAN
Department of Computer Science and Engineering

Graduate School of Soongsil University

The High-Performance Conjugate Gradient (HPCG) benchmark complements the

HPL benchmark for supercomputing system evaluation. HPL emphasizes dense

linear algebra operations with high floating-point performance, while HPCG

emphasizes memory access patterns and sparse linear algebra operations that are

common of many scientific applications to better assess modern supercomputing

architectures. The memory-bound kernels of the reference HPCG implementation,

especially the sequential Symmetric Gauss-Seidel (SymGS) routine and the

bandwidth-limited Sparse Matrix-Vector Multiplication (SpMV) operation, limits

performance.

This thesis introduces KoHPCG, a performance-portable HPCG benchmark using

Kokkos programming model to address portability issues. The work begins with a

thorough survey of HPCG optimizations to identify bottlenecks and improvements.

Multiple algorithmic variants of the Symmetric Gauss-Seidel method are developed

xi

and evaluated to improve parallel scalability without affecting the numerical accuracy.

The implementation translates all core HPCG kernels into Kokkos, including

DDOT, WAXPBY, SpMV, SymGS, and MG operations. This uses Kokkos::Views

for memory management, parallel execution, and execution and memory space

abstractions to achieve performance portability across architectures. In multi-node

configurations scaling up to 16 nodes, evaluated on Intel Xeon Phi (KNL) and Xeon

Skylake (SKL) with MPI+OpenMP configurations. The results show significant

improvements over the reference HPCG implementation and previous Kokkos-based

variants like KHPCG.

The contributions of this work include: (1) a thorough analysis of HPCG optimization

techniques and bottlenecks, (2) novel algorithmic variants of SymGS that improve

parallel scalability, (3) a complete performance-portable implementation of HPCG

using Kokkos, and (4) comprehensive performance evaluation on intel architectures.

This research gives the HPC community a robust and extensible benchmarking

framework for realistic performance evaluation on different systems, laying the

groundwork for performance-portable HPCG improvements.

Keywords: High-PerformanceConjugateGradient (HPCG), SymmetricGauss–Seidel

(SymGS), Iterative Methods, Parallel Computing, Performance Optimization,

Performance Portability, Kokkos, Multigrid (MG), High-Performance Computing

(HPC).

xii

xiii

국문초록

KoHPCG - 이기종 환경에서 성능 이식성을

보장하는 Kokkos 프레임워크 기반의 HPCG

벤치마크 프로그램

리즈완 무하마드

컴퓨터학과

숭실대학교 대학원

HPCG (High-Performance Conjugate Gradient) 벤치마크는 슈퍼컴퓨팅

시스템 평가를 위한 HPL 벤치마크를 보완합니다. HPL 은 높은 부동소수점

연산 성능을 갖춘 조밀한 선형대수 연산을 강조하는 반면, HPCG 는 과학적

응용에서 흔히 나타나는 메모리 접근 패턴 및 희소 선형대수 연산을

강조하여 현대 슈퍼컴퓨팅 아키텍처를 보다 현실적으로 평가할 수 있도록

합니다. 특히, 참조 HPCG 구현의 메모리 병목 커널인 SymGS (Symmetric

xiv

Gauss-Seidel) 루틴과 대역폭 제한을 받는 SpMV (Sparse Matrix-Vector

Multiplication) 연산은 성능을 제한하는 요인입니다.

본 논문은 이식성 문제를 해결하기 위해 Kokkos 프로그래밍 모델을 사용한

성능 이식 가능한 HPCG 벤치마크인 KoHPCG 를 소개합니다. 본 연구는

HPCG 최적화 기법에 대한 철저한 조사를 바탕으로 병목 현상과 개선 사항을

파악하는 것에서 출발합니다. 수치 정확도에 영향을 주지 않으면서 병렬

확장성을 향상시키기 위한 여러 가지 SymGS 알고리즘 변형을 개발하고

평가합니다.

KoHPCG 구현은 DDOT, WAXPBY, SpMV, SymGS, MG 연산을 포함한 모든

핵심 HPCG 커널을 Kokkos로 변환하며, 메모리 관리, 병렬 실행, 실행/메모리

공간 추상화를 위해 Kokkos::Views 를 사용하여 아키텍처에 구애받지 않는

성능 이식성을 달성합니다. Intel Xeon Phi (KNL) and Xeon Skylake (SKL)

시스템에서 MPI+OpenMP 환경으로 최대 16 개의 노드를 사용하는 다중

xv

노드 환경에서의 확장성 실험을 통해 기존 참조 HPCG 구현 및 KHPCG 와

같은 이전 Kokkos 기반 구현보다 유의미한 성능 향상을 보여줍니다.

본 연구의 주요 기여는 다음과 같습니다: (1) HPCG 최적화 기술 및 병목

현상에 대한 철저한 분석, (2) 병렬 확장성을 개선하는 새로운 SymGS

알고리즘 변형, (3) Kokkos 를 활용한 완전한 성능 이식 가능한 HPCG 구현,

(4) 인텔 아키텍처를 대상으로 한 포괄적인 성능 평가. 이 연구는 다양한

시스템에서 현실적인 성능 평가를 가능하게 하는 견고하고 확장 가능한

벤치마크 프레임워크를 HPC 커뮤니티에 제공함으로써, 성능 이식 가능한

HPCG 개선의 기반을 마련합니다.

키워드: 고성능 컨주게이트 그래디언트(HPCG), 대칭 가우스–자이델(SymGS),

반복 해법, 병렬 컴퓨팅, 성능 최적화, 성능 이식성, Kokkos, 멀티그리드(MG),

고성능 컴퓨팅(HPC).

CHAPTER 1. Introduction

The High-Performance LINPACK benchmark (HPL) [1] has been utilized

to measure supercomputer performance since the 1990s. Primarily employed

to solve the dense linear algebraic equations. Despite HPL’s longstanding

reliability as a standard, modern supercomputers and emerging applications have

exposed its bounds. HPL measures only peak performance, however it fails to

accurately represent the performance of modern applications. These applications are

sophisticated and require optimal coordination of different components within the

computer system.

High-performance computing (HPC) utilizes the High-Performance Conjugate

Gradient (HPCG) [2–5] as an entirely different benchmark for evaluating and

comparing the performance of modern supercomputers. The HPCG benchmark

utilizes the conjugate gradient method, which function on sparse matrices. A sparse

matrix is a matrix characterized by a significantly large number of zero elements in

comparison with non-zero elements. HPCG specifically accounts for deficiencies

of HPL and presents a complement to the well-established HPL benchmark. HPCG

more accurately measures the performance of modern applications by evaluating their

capacity to deal with complex problems. HPCG evaluates the coordination of all

components of the computing system, including memory bandwidth, computational

1

capability, interconnect network efficiency, and overall system synchronization.

HPCG is a benchmark that more accurately represents the performance of modern,

practical, and real-world applications.

HPL solves the linear equations in dense matrices using Gaussian elimination with

partial pivoting, whereas HPCG concentrates on partial differential equations (PDEs)

and solves linear systems of equations in sparse matrices, discretized using 27-point

stencils for three-dimensional elliptical PDEs. The HPCG reference implementation

uses the preconditioned conjugate gradient (PCG) algorithm in conjunction with the

multigrid method (MGM). The ability of HPCG to evaluate different components of

the system provides it an advantage over HPL. The recent development of Exaflops

(1018 flops) supercomputers makes the use of HPL to measure system performance

less attractive for practical applications.

Kokkos [6] is a C++ library designed to enhance performance portability across

diverse hardware architectures. These architectures encompass central processing

units (CPUs), graphics processing units (GPUs), and other novel platforms.

Besides offering abstractions for parallel execution and data management, it allows

developers to produce code that is efficient and portable, without having to deal

with the complexities that are specific to the hardware architectures. Kokkos is

compatible with various backends, including CUDA, HIP, SYCL, OpenMP, and C+

+ threads, facilitates seamless transitions between different execution environments.

Kokkos Kernels offers a compilation of performance-optimized routines. These

routines comprise of sparse and dense linear algebra, batched operations, and

graph algorithms. All of these routines are formulated according to the Kokkos

programming model. The interplay of these two factors enables developers to

construct high-performance applications that align with the progressively evolving

2

paradigm of HPC.

1.1 Motivation

The foundation of HPCG is the Preconditioned Conjugate Gradient (PCG)

algorithm, which depends on essential computational kernels: Sparse Matrix-Vector

Multiplication (SpMV) and Symmetric Gauss-Seidel (SymGS). These kernels

are memory bound, with SymGS identified as the main performance bottleneck

owing to its inherently sequential nature and data dependencies. This bottleneck

significantly restricts scalability and impacts the effective use of modern hardware,

where computational throughput outweighs the available memory bandwidth.

Over the past decade, numerous researchers have proposed methodologies to

improve the performance of SymGS across various hardware platforms, including

CPUs, GPUs, MICs, and FPGAs. However, these efforts have predominantly resulted

in architecture-specific optimizations that require significant optimization and are not

easily portable across diverse systems. The increasing diversity of HPC systems

renders the absence of performance portability a major limitation.

A notable attempt to address this issue was the development of KHPCG [7, 8], a

Kokkos-based variant of HPCG aimed at delivering performance portability through

hardware abstraction.The Kokkos programming model [6, 9, 10] accommodates

multiple backends, including CUDA, HIP, SYCL, and OpenMP, allowing

applications to operate on diverse platforms without requiring the modification

of architecture-specific code. Although KHPCG an important step forward but it

was suffered from several limitations, including limited parallelism (support for a

single MPI rank), suboptimal performance, and numerical instability, especially in

the multicolor implementation of SymGS. The report [11] emphasized the main

3

problems in the practical implementation of KHPCG.

These challenges highlight a clear need for an effective solution. The motivation

behind this thesis arises with the goals in mind, as follows:

• Addressing the performance bottleneck caused by the SymGS routine in the

HPCG benchmark through the development of parallel variants of SymGS.

• Porting the core HPCG computational kernels to the Kokkos programming

model to facilitate portability.

• Providing theHPC communitywith a scalable, efficient, and performance-portable

implementation of the HPCG benchmark capable of functioning across diverse

architectures.

1.2 Problem Statement

Although HPCG is valuable for simulating realistic application behavior, its

performance is considerably constrained by memory-bound kernels, especially

SymGS and SpMV operations. The existing reference implementation of SymGS in

HPCG is sequential, presenting two significant issues:

1. It fails to properly exploit the parallel processing capabilities of modern CPUs,

GPUs, and other accelerators.

2. It does not scale efficiently with increasing core counts or across different

architectures.

Thus, there is a need to redesign the SymGS routine for parallel execution

without compromising its convergence properties and to integrate this within a

performance-portable framework to support future computing environments.

4

1.3 Research Objectives and Contributions

The primary objective of this thesis is to develop a high-performance and

performance-portable implementation of the HPCG benchmark, focusing particularly

on optimizing the SymGS kernel. The specific goals are as follows:

• Analyze the limitations of the current SymGS implementation in the HPCG

benchmark.

• Investigate existing parallelization strategies for SymGS based on graph theory.

• Design and implement a parallel and scalable SymGS algorithm suitable for

various hardware architectures.

• Integrate the new SymGS implementation into the HPCG benchmark using the

Kokkos framework [6] for performance portability.

• Evaluate the performance of the proposed solution across multiple architectures

including CPUs and GPUs.

Key Contributions:

• A thorough study and classification of SymGS optimization strategies for

HPCG.

• Development of new parallelized variants of the SymGSwithout compromising

the numerical stability while improving performance.

• The optimized SymGS method is integrated to a Kokkos-based HPCG

benchmark implementation so that it can be used on multiple platforms.

• Empirical evaluation of the proposed implementation on Intel Xeon Phi (KNL)

and Xeon Skylake (SKL) systems to demonstrate performance improvements

5

and scalability.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2. Background

This chapter introduces the foundational concepts and tools you need to know

in order to understand the rest of the thesis. It includes:

– HPCG: Overview of the High Performance Conjugate Gradient

benchmark.

– Kokkos: Introduction to the Kokkos programming model and its role in

performance portability.

– SymGS: Explanation of the Symmetric Gauss-Seidel routine and its

significance in HPCG.

• Chapter 3. Literature Review

Examines prior research efforts and developments, concentrating on:

– HPCG: Implementation details, its evolution and adoption. Its

optimization constraints as some changes are allowed, but the authors

who developed HPCG imposed some restrictions and insisted that those

parts of the benchmark should not be modified.

– SymGS: Optimizations and limitations that have been reported in

previous work.

– Kokkos-Based Implementation: Review of Kokkos integration into

HPCG and related performance-portable efforts.

6

• Chapter 4. Techniques and Trends in HPCG

Explores broader patterns and practices used in optimizing HPCG, such as:

– Parallelization Strategies: Different parallelization strategies adopted

by other researchers to improve the architecture-specific performance.

– Data Layout and Storage Formats: Different data storage formats and

their impact.

– OpenChallenges: Technical issues in the pursuit of scalable and portable

HPCG.

• Chapter 5. SymGS Variants

Details the development and parameters selection of:

– Our Developed SymGS Variants: Present the concept and algorithmic

details of our effort to parallelize the SymGS and conduct a comparative

analysis of these variants.

• Chapter 6. Performance-Portable KoHPCG

Presents the design and build details of a Kokkos-based portable HPCG

implementation that includes our optimized SymGS variant.

• Chapter 7. Conclusion and Future Work

Summarizes the thesis contributions and outlines directions for future research.

7

CHAPTER 2. Background

2.1 HPCG

HPCG is a new benchmark more relevant to real application for HPC systems

than other benchmarks like HPL. Its primary objectives are to achieve the

ability to estimate the system performance for the target application by mirroring

the computational behaviors in actual environments and contribute to enhancing

computer systems that address practical use cases, to complement the measurements

that show the theoretical potential of the system. The HPCG benchmark measures

supercomputer performance, providing a more realistic measure than the HPL

benchmark [12].

2.1.1 Preconditioned Conjugate Gradient Method

Conjugate Gradient (CG)method is a numerical iterative solver used to solve linear

systems, and the convergence rate of the CG method is measured to evaluate systems

performance. The HPCG benchmark depends upon the Preconditioned Conjugate

Gradient (PCG) algorithm [12],which is an iterative computational technique helpful

when solving large size sparse linear system of equations [2].

Algorithm 1 Preconditioned Conjugate Gradient (PCG) begins by initializing

8

Algorithm 1 Preconditioned Conjugate Gradient (PCG)
1: Input: Matrix A, vectors b, initial guess x, tolerance (ϵ),max iterations kmax
2: Output: Approximate solution vector x
3: Set: x0 ▷ Set initial guess: x0
4: r0 = b−A · x0 ▷ Compute initial residual
5: p0 = r0 ▷ Set initial search direction
6: normr0 = ∥r0∥2 ▷ Compute initial residual norm
7: for k = 1 to kmax do
8: zk = MG(A, rk) ▷ Compute preconditioned residual
9: rtzk = rk · zk ▷ Compute dot product
10: Apk = A · pk ▷ Compute
11: αk = rtzk

pk·Apk
▷ Compute step size

12: xk+1 = xk + αkpk ▷ Update solution
13: rk+1 = rk − αkApk ▷ Update residual
14: if ∥rk+1∥2/normr0 < ϵ then ▷ Check for convergence
15: break
16: end if
17: βk =

rtzk+1

rtzk ▷ Compute new direction
18: pk+1 = zk+1 + βkpk ▷ Update search direction
19: end for

an approximate solution x0 and compute the initial residual r0 = b − Ax0, which

estimates the error in the initial guess, and the direction of search is initially set as the

residual, p0 = r0 , and the algorithm iterates to update residual and search direction to

reach for the solution. In each iteration a multigrid preconditioner is used to improve

the convergence, then a dot product and a matrix-vector multiplication are performed

to compute the step size αk, and it determines to move along the search direction. The

solution and then the residual are updated to recalculate the remaining error. If the

error is sufficiently small, the iteration process stops algorithm to perform, when it

check for convergence by comparing the current residual against a given ϵ. If not, the

search direction is updated, to ensure it remains conjugate to the previous directions,

and the process repeats. With appropriate preconditioning, this iterative approach

allows the PCG method to efficiently solve large sparse systems of equations. HPCG

9

is primarily relies on the performance of the SpMV and SymGS. HPCG solves a

sparse linear equation with a simple additive Schwarz using the PCG algorithm [2].

2.1.2 HPCG Execution Flow Process

The HPCG benchmark is designed to simulate real-world computation patterns

usually found in scientific/engineering applications. Its execution flow as shown

in Figure 2.1 begins with allocating for the local sub-domain of each MPI process

and the geometry setup, which divides the problem domain for parallel computing.

Then, initializes sparse matrices and prepares main data structures such as the

matrix A, solution vector x, and right-hand side vector b. Key computational

operations are Compute SymGS, which performs SymGS iterations to approximate

the solution of the sparse system, while Compute SpMV called to accomplish the

sparse matrix-vector multiply, Compute Dot-Product computes the vector-vector

dot products, and Compute WAXPBY does the weighted vector adds. Finally, users

may implement their optimization routines using the OptimizeProblem function

provided in the reference implementation. Once the iterative process is completed,

results produces a report consisting of timing information, flops, memory bandwidth,

and validation information.

The core computational kernels participating in the HPCG benchmark are Dot

Prodeuct (DDOT), WAXPBY, SymGS, SpMV, Restriction and Prolongation

operations, which are explained in detail in Section 2.1.6.

HPCG forms the problem setup then a symmetric positive definite matrix is created

from Compressed Sparse Row (CSR) format [2]. Such an approach makes use of

memory and computations in the most efficient manner possible, and the benchmark

really tests the capabilities of a machine. The amount of data in the matrix is

10

Figure 2.1 HPCG Execution Process Flow

designed to optimally fit the machine’ s capacity to conduct an exhaustive assessment

of its performance. HPCG benchmark implies the local SymGS preconditioner.

Whereas this preconditioner helps in the reduction of the matrix and so helps in faster

convergence in PCG algorithm. The matrix is divided into lower and upper triangular

matrices; this allows the preconditioner to gradually improve the solution making it

functionally efficient. Also, the benchmark requires verification and/or validation

processes, computation of pre/post conditions, and invariants. Convergence tests and

comparison with the reference kernels were employed to check the accuracy of the

computation to assure that the results obtained are consistent. HPCG benchmark

replicates the actual application workloads and uses multiple iterations. Numerical

results obtained at each iteration are checked with expected answers for verification

and cache is cleared before each iteration. It eliminates cases of false popularity

from cache usage as well as ensures an impartial evaluation of the system. Finally,

HPCG produces a report consisting of timing information, flops, and validation

computations. System configuration is documented throughout this report and may

be critical in understanding benchmark performance. This makes HPCG benchmark

comprehensive and fair at the same time for HPC systems evaluation.

11

2.1.3 Problem Setup in HPCG

Figure 2.2 shows a 27-point stencil 3D in HPCG benchmark designed to solve the

linear system of equation:

A · x = b.

where A is a sparse matrix of size n × n, x is an unknown vector of size n, b is a

known vector of size n.

Figure 2.2 27 point stencil in HPCG

It approximate the values of the solution vector x using the PCG algorithm, which

is an iterative computational technique helpful when require to solve the system of

large and sparse linear equations. The benchmark is using the Poisson equation

discretized on a 3D cubic domain with homogeneous Dirichlet boundary conditions.

This benchmark performs domain decomposition, using an additive Schwarz method.

Each subdomain is further preconditioned with a SymGS, one of the core numerical

kernels of HPCG.

12

2.1.3.1 Sparse Matrix Representation

The matrix A is sparse and most of its entries are zero. In the context of the

three-dimensional grid, every cell of the grid is connected with its neighbor, which

gives the nonzero entry of the matrix A. The 27-point stencil, in a 3D discretization

connects it with 26 immediate neighbours, including the 6 face neighbours, 12 edge

neighbours, and 8 corner neighbours. This leads to a sparse matrix format where there

is at most 27 non-zero value in each row represents each grid point with the current

point and its neighbors.

2.1.3.2 Domain Decomposition and Process Layout

A 3D grid is the problem domain, which is sub-divided into smaller subdomains.

These subdomains are distributed among multiple MPI processes to parallelize the

computation. Nx, Ny and Nz are the dimensions of the local sub-domain and in the

process layout NRx, NRy, and NRz are number of MPI processes in x, y and z

directions, respectively. The global domain size is thus given by (NRx × Nx) ×

(NRy×Ny)× (NRz×Nz), and the total computation is divided among theNRx×

NRy ×NRz MPI processes, each handling a subgrid of the overall domain.

2.1.3.3 Stencil Operator

The 27-point stencil operator, illustrated in the Figure 2.2, demonstrates how a

central grid point and its immediate neighbors are coupled in a 3D grid. Each dot

represents a grid point, and edges indicate how each point interacts is coupling with its

neighbors. This stencil is one of the most important factors in the HPCG benchmark

because the sparse matrix operations rely directly on this stencil due to the definition

of the structure of matrix A.

13

The HPCG benchmark is designed to emulate the behavior of real-world

applications that solve large, sparse linear systems on 3D grids. At the center of

defining the sparsity pattern of matrix A is the 27-point stencil operator, and efficient

computation is divided among several MPI processes to leverage parallelism in high

performance computing environments. This leads to a sparse matrix format where

there is at most 27 non-zero value in each row represents each grid point with the

current point and its neighbors.

2.1.4 Properties

The HPCG benchmark constructs a 3D partial differential equation model problem

and uses preconditioned conjugate gradient iterations on the sparse linear system [4].

The characteristics are defined by input parameters, but some constraints are applied

at the setup stage. The benchmark builds up a sparse linear system that is distributed

with 27-point stencil for each of the grid points. This results in a matrix with specific

properties [4,5]:

1. Nonzero Entries Per Row:

Nonzero entries per row =


27, for interior points

7 to 18, for boundary points

2. Matrix Properties:

The matrix is positive definite, symmetric, and non-singular.

14

A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...

an1 an2 · · · ann



where AT = A (symmetric), ∀x ̸= 0 when xTAx > 0 (positive definite), and

det(A) ̸= 0 (non-singular).

3. Exact Solution Vector:

The exact solution vector x is known, with all elements equal to 1.0.

4. Matching Right-Hand-Side Vector:

The right-hand-side vector b is constructed to match the exact solution.

A · x = b.

5. Initial Guess:

The initial guess vector x0 is selected with all zeros.

2.1.5 Optimization Constraints

In the reference implementation of HPCG, some optimizations are allowed, but

the authors who have developed HPCG, imposed some limitations and insisted for

not modifying those aspects of the benchmark [4].

15

2.1.5.1 Allowed Optimizations

Mesh Partitioning/Reordering optimization is in fact the reorganization of the

mesh points to help in the minimization of overhead that may arise in cases of data

distribution between different processors and also help in the optimal use of cache in

a hierarchical memory system.

User defined data structures eliminating different levels of abstraction

and creating custom data structures tailored to the computational kernels can

enhance memory access patterns and data locality and enhance the computational

performance. When data structures are well defined then there is improvement in the

efficient usage of memory.

System-Specific Communication Infrastructure Optimization can lead to

the overall performance improvement. Utilization of specific network hierarchies

and topologies tailored for hardware characteristics helps in improving the

communication strategies.

Advance MPI communication if different types of MPI features are used,

for example synchronization using neighborhood collective is an efficient

communication pattern for specific application need [13]. Advance MPI features

of course decreases the communication overhead and able to share data in the more

efficient way which leads to the scalability on the large core counts.

Data storage format changes are permitted to sparse matrix data structure to

improve the memory access but these changes for SpMV and SymGS kernels must

not eliminate the indirect addressing of the input vector.

Computational Kernel Optimizations must have the same mathematical

preconditioner, which must be capable of stressing the different component of

16

the system. Therefore the computational kernels coding which required special

consideration for optimizing are:

• Compute DOT Product

• Compute WAXPBY

• Compute SpMV

• Compute SymGS

• Compute MG

2.1.5.2 Not Allowed Optimizations

Basic Conjugate Gradient (CG) Algorithm optimization by means of

different variants of the CG method avoiding some challenging aspects of the

classical algorithm. Some examples of the prohibited variants are Reordered

conjugate-gradient methods [14–18] and Pipelined conjugate-gradient methods

[19,20]

Matrix Data Properties with prior knowledge concerning the pattern of sparsity,

or the structure, or exploiting the discretization symmetry of matrix, and domain

dimensionality information.

Spectral Properties information exploitation for the utilization of the optimal

preconditioners or acceleration of its iterations unrealistically based on the known

spectral properties of the matrix.

Data Representation Simplifications by applying the infrequency of the matrix

pattern as regular or using near-regularity to the pattern. Reduction in the storage

requirement by changing the defined precision or exploiting the symmetry in the data

17

is also prohibited.

Other modifications such as the optimizations which bypass the objectives of the

benchmark are generally not permitted.

2.1.6 Core Kernels in HPCG

In HPCG, for solvingA ·x = b, a PCG algorithm is used as described in Algorithm

1. These algorithms of the core kernels are presented in the simplest way to understand

the task performed by these kernels, but the optimization of these kernels is not

as simple as they seems simple in these algorithms because the data dependencies

significantly complicate the optimization, when they use within the PCG. Section

3.1 summarize the efforts put in by researchers towards addressing the challenges in

optimizations.

2.1.6.1 Dot Product (DDOT)

α = x · y (2.1)

where α is scalar and the x, y are vectors.

DDOT calculates the scalar result of two input vectors x and y, each of length n.

2.1.6.2 WAXPBY

w = α · x+ β · y (2.2)

where α and β are the scalar values, x and y are input vectors, and w is the resultant

vector.

WAXPBY is the weighted addition of two vectors x and y (scaled vector αx plus a

scaled vector βy), also known as vector vector coefficient multiplication [21]. An

18

abbreviation come from the operation it performs as mentioned in equation 2.2. The

operation takes the vector x, scales it by α, and the vector y, scales it by β and then

add these two scaled vectors together and get the resultant vector w.

2.1.6.3 Sparse Matrix-Vector Multiplication (SpMV)

y = A · x. (2.3)

SpMV computes the product of a sparse matrix A with a vector x to produce a vector

y. The reference implementation employs the Compressed Sparse Row (CSR) data

format. However, there are various data formats discussed extensively in literature

by many researchers. Some of the most common sparse matrix data formats are also

mentioned in Section 4.1.

2.1.6.4 Symmetric Gauss-Seidel (SymGS)

The Symmetric Gauss-Seidel (SymGS) method is an effective iterative solver for

sparse linear systems of the form:

A · x = r, (2.4)

where A is an n × n sparse symmetric positive definite (SPD) matrix, r is the

residual vector, and x is the solution vector. The matrix A is decomposed into three

components:

• L: the strictly lower triangular part of A,

• U : the strictly upper triangular part of A,

• D: the diagonal matrix containing the diagonal entries of A.

19

The SymGS algorithm consists of two main phases forward and backward sweeps,

applied sequentially during each iteration. These steps aim to update the solution

vector by attenuating high-frequency errors.

Forward Sweep: In the forward sweep, the updated solution is obtained using the

lower triangular and diagonal parts of A:

(L+D) · x(k+1) = r − U · x(k), (2.5)

where x(k) is the solution at the k-th iteration.

Backward Sweep: The backward sweep then refines this update using the upper

triangular and diagonal components:

(U +D) · x(k+1) = r − L · x(k). (2.6)

Residual Computation: The residual vector r is computed as:

r = b−A · x(k). (2.7)

Role in HPCG: In the HPCG benchmark, SymGS serves as a smoother within the

multigrid preconditioner. Its primary objective is to suppress high-frequency error

components that arise during iterative solution of the linear system, in the PCG

method.

However, due to the inherent data dependencies in both the forward and backward

sweeps, parallelization of SymGS is challenging. These dependencies limit

concurrent updates to the solution vector, making SymGS less scalable on modern

20

multi-core and many-core architectures.

2.1.6.5 Multigrid V-cycle (MG)

Multigrid V-cycle is among the most effective iterative methods in solving large

systems of linear equations. The method take advantage of mulltiple levels of

grid resolutions by recursively moving between finer and coarser grids for better

convergence by addressing high-frequency and low-frequency errors. This multigrid

method (MGM) accelerates the convergence of coarser grids by reducing the errors

efficiently, compared to conventional iterative methods.

MG takes a matrix A and a vector r as input and initializes a solution vector x to

zero. If multigrid data available for the matrixA, the algorithm applies pre-smoothing

using iterative solver SymGS. This helps to reduce the high-frequency errors that are

present in the initial guess provided for x. The smoothing step is next followed by

the computation of the residual. This residual is taken as the error in the current

approximation. The residual is then restricted to a coarser grid, and on the coarser

grid the low-frequency errors could be resolved. The restriction reduces the size

which makes the solution faster to solve. The algorithm then solves the problem on

the coarser grid recursively. This recursion allows the algorithm to repeat the same

multigrid steps at each coarser level where the problem becomes small enough to

solve easily. Once solved at the coarsest level, the solution is prolongated back to the

finer grid. This prolongation step interpolates the coarser grid solution back to the

finer grid, to enable it for further refinement of the solution.

Then post-smoothing is done on the finer grid by using SymGS again. This

post-smoothing step will ensure that any high-frequency errors, that may be generated

by the prolongation can reduced to get an accurate solution. If multigrid data is not

21

exist, then algorithm falls back to applying the SymGS smoother directly for solving

the system without multigrid coarsening or prolongation. This fallback ensures that,

even in the absence of multigrid the algorithm could still solve. The preconditioner

utilized in HPCG is a V-cycle from the geometric multigrid methods. The total

number of V-cycle levels are hard coded to 4 in the reference implementation of the

HPCG as shown in Figure 2.3.

Figure 2.3 Geometric multigrid V-cycle preconditioner in HPCG

2.2 Kokkos EcoSystem

Kokkos [6,9,10] is a C++ template library and programming model that makes it

possible to run programs on different architectures by abstracting parallel execution

and data management and mapping high-level constructs onto backends like CUDA,

HIP, SYCL, OpenMP, and threads. Kokkos is engineered to address complex node

architectures featuring N-level memory hierarchies and various execution resource

types. Its main abstractions are execution and memory spaces, execution patterns and

policies, memory layouts, and these traits make it possible to specialize at compile

22

time for the target hardware. Kokkos provides a complete ecosystem as shown

in Figure 2.4 for performance portability which includes math kernels, tools for

debugging, profiling, and tuning, and community support through documentation,

and tutorials.

Figure 2.4 Overview of the Kokkos ecosystem including tools, core components,
remote spaces, and kernel libraries. Adapted from [22].

Kokkos was initially created at Sandia National Laboratories as part of the Exascale

Computing Project to fulfill the requirement for a unified codebase that can target

CPUs, GPUs, and other accelerators without necessitating algorithmic rewrites. It

decouples algorithmic intent from hardware specifics by providing compiletime

abstractions for parallel execution and memory management.

2.2.1 Programming Model

• Core Abstractions: The programming model is based on abstractions:

execution spaces, execution patterns, execution policies, memory spaces,

memory layouts, and memory traits.

23

• Execution Spaces: Execution spaces (like CUDA, HIP, OpenMP, and

Threads) tell where parallel kernels run. This lets code change according

to target architecture just by changing template parameters.

• Memory Spaces: Specify where the data is stored (like CudaSpace or

HostSpace).

• Execution Patterns: Parallel constructs like parallel_for, parallel_reduce,

and parallel_scan.

• Execution Policies: Control execution behavior, such as range and team

policies.

• Memory Layouts: Define the data arrangement in memory (e.g., LayoutLeft,

LayoutRight).

• Memory Traits: Define properties like unmanaged or atomic access.

2.2.1.1 Sample Code Example

This simple 1D vector addition implementation showKokkos programing structure

for portable execution across backends for example with OpenMP for CPUs, CUDA

for GPUs.

24

Kokkos Example (Portable)

Kokkos::parallel_for(”VecAdd”,

Kokkos::RangePolicy<>(0,N),

KOKKOS_LAMBDA(const int i) {

C(i) = A(i) + B(i);

});

The Kokkos example hides the details of managing threads at a low level, so the

same code can run on both CPUs and GPUs by choosing the right execution space at

compile time.

2.2.2 Packages/Repositories

The Kokkos EcoSystem as shown in Figure 2.4 has a number of packages/

repositories, which are listed below.

• Kokkos Core: The Core library implements the above mentioned abstractions,

assigning tasks to backends and controlling data lifecycle without causing

runtime overhead.

• Kokkos Kernels: Kokkos Kernels is a library that works with Kokkos and

provides sparse and dense linear algebra routines, batched BLAS/LAPACK,

and graph algorithms. It works well on both CPUs and GPUs.

• Kokkos Remote Spaces: Remote Spaces adds a Partitioned Global Address

Space (PGAS) model to Kokkos, which lets you use distributed-memory data

structures with resilience capabilities.

• Kokkos Tools: The Tools interface offers mechanisms for debugging,

profiling, and autotuning frameworks, presenting comprehensive runtime

25

information through a standardized callback APIs.

• Kokkos Support: Comprehensive documentation, tutorials, and bootcamps

guide users in integrating Kokkos into their projects via CMake and GitHub

repositories.

26

CHAPTER 3. Literature Review

This chapter provides an overview of the research that has already been done

on optimization strategies for the HPCG benchmark. This chapter discussed

architecture-specific optimizations, which cover CPUs, GPUs, hybrid systems,

FPGAs, GraphBLAS and performance-portable frameworks like Kokkos. Chapter

4 contains details of sparse matrix data formats and parallelization optimization

strategies discussed in the literature review.

3.1 HPCG Optimization Techniques

In HPCG, the most time-consuming kernel is SymGS, followed by SpMV because

of its memory-bound nature. The optimization of HPCG primarily focuses on

the optimization of these two main kernels. For optimization of SpMV, effective

strategies are domain decomposition, parallelization, and the utilization of the

efficient storage format. For SymGS optimization, parallelization techniques

and hardware-specific tuning applied by the researchers are summarized in the

following subsection. In both kernels, the hybrid parallelization approaches

combine MPI (distributed memory) and OpenMP (shared memory) parallelization

schemes. Hardware-based parallelization, such as vectorization through SIMD

instructions and task offloading on GPUs or FPGAs, also significantly enhances the

27

performance of these kernels. Other than these, task load balancing, communication

computation improvement, and cache-friendly data reordering techniques are also

discussed literature. The multigrid method offers another avenue for optimization by

subdividing the problems and solving them at multiple levels. The effectiveness of

the optimization using these techniques necessitates the careful tuning of the problem

based on the specific hardware architecture characteristics. Successful optimization

of the HPCG benchmark required a careful combination of these techniques tailored

to the target system and the properties of the sparse matrix used.

In this section, we group the optimization techniques discussed in the reviewed

papers by architecture and year-wise. Since the introduction of HPCG in 2013, several

optimizations have been done regarding different architectures.

3.1.1 CPU-Based Systems

3.1.1.1 Intel Architecture - IA

In 2015 [23] presented the updates on their intel-based work [24], which further

tested on single and multi-node with the enhancements introduced in HPCGv3.0.

They also focused on software upgradation such as optimized sparsematrix operations

in the Intel Math Kernel Library (MKL) [25] and the open source SpMP library [26]

for sparse matrix pre-processing and optimization of multi-grid implementation to

enhance the performance of HPCG. The upgradation for HPCGv3.0 with these

optimizations in the GenerateProblem and SetupHalo routines reduced the overhead

to less than 3% and 4% on Haswell (HSW) and Knights Corner (KNC) architectures,

respectively.

In 2016 [27] expanded upon the previous work [24] of the authors, optimized

HPCG for Intel Xeon and Xeon Phi processors using techniques like point-to-point

28

synchronization, loop fusion, and hybrid parallelization schemes. The novelty of

this work lay in the fusion of GS and SpMV, and these optimization techniques

significantly reduced the amount of data transfer from memory by enabling data

to be reused from the cache. [28] optimized HPCG for a CPU+MIC platform,

with techniques like offload programming, vectorization, and parameter tunings.

The author applied different optimization techniques, including the integration

of an offload programming mode to use the Intel Xeon Phi coprocessors

for computationally intensive kernels, vectorization using the Intel compiler

auto-vectorization options, and parameter optimizations to find the best matrix

size for MIC architecture. They were parallelized and optimized the four main

kernels of the HPCG. Their approach allowed the CPU to handle less parallelizable

tasks, and the MIC co-processors managed to execute heavily parallelizable routines.

Further, the authors highlight the impact of heat dissipation from the devices on

performance stability and develop an intelligent dynamic cooling solution for theMIC

coprocessors to keep them at optimal temperatures and maintain their performance

stability. They demonstrated that heat management is also critical for achieving

stable performance on MIC coprocessors. They achieved significant speedup over

the reference implementation.

In 2024 [29] optimized implementation primarily developed for ARM-based

systems but also tested on an Intel Xeon system. They also tested their techniques

on both single nodes and distributed cluster environments, scaling up to 256 nodes

and 16,384 cores with 2048 MPI processes. The results showed nearly linear

scalability and improved performance, particularly when incorporating asynchronous

communication strategies.

29

3.1.1.2 Arm-Based Architectures

In 2019 [30, 31] presented the profiling of HPCG on an Arm-based platform

Cavium ThunderX2. Demonstrated an optimized implementation of the HPCG

benchmark with an emphasis on shared memory parallelization using OpenMP. In

addition to a dynamic slicing technique for adaptive block geometry, the authors

employed two primary optimization strategies: multi-color reordering and block

multi-color reordering of the SymGS preconditioner. The optimizations presented

in this paper [31] are identical to those that have already been discussed in the

technical report [30]. The strategies outlined in this paper were specifically developed

for the ARMv8.1 Cavium ThunderX2 processor, which features a shared memory

architecture.

In 2023 [32] implemented a new HPCG based on the ALP/GraphBLAS [33]

and tested it on ARM Kunpeng (920-4826) up to 7 nodes ARM cluster. It had

scalability issues in distributed settings. The objective of this work was to leverage

the algebraic abstraction and optimization capabilities of ALP/GraphBLAS [34],

which is a C++ variant of GraphBLAS called ALP. The authors proposed a

new implementation of HPCG based on ALP/GraphBLAS [35] and conducted the

evaluation of its performance on both shared and distributed memory systems.

The SymGS smoother was replaced with a Red-Black Gauss-Seidel (RBGS) to

facilitate parallelism, and restriction and refinement operations were implemented as

matrix-vector multiplications as the key design changes. Their implementation [35]

outperformed in shared memory experiments on x86 and ARM architectures and

encountered significant scalability limitations in distributed systems, compared to

the reference implementation, mainly due to the communication overheads and the

inability of GraphBLAS to efficiently manage data distribution.

30

In 2024 [36] focused on the theoretical development of the optimization techniques,

and another paper [29] expanded on the practical implementation and provided the

performance evaluation across different applications in detail. These two papers

are closely related, and the research presented focused on optimizing the Multi-Grid

Preconditioned Conjugate Gradient (MGPCG)method [37],which was subsequently

applied to the HPCG benchmark. In this research, the authors developed novel

techniques to optimize the SymGS and a block multi-color (BMC) scheduling

method with point-to-point synchronization to improve the parallelism and the load

balance. [29] tested their optimizations on Arm-based platforms, evaluated their

optimized HPCG implementation, and compared them with vendor-tuned HPCG

implementations on three different systems: Phytium 2000+, Kunpeng 920, and

Thunder X2 ARMv8.

3.1.1.3 K Computer

In 2016 [38] presented the optimization on the K computer, focused particularly

on single-node performance optimization of the HPCG benchmark, with several

optimization techniques tailored to take advantage of the K computer’s architecture.

The authors utilized memory layout reorganization to achieve sequential memory

access, which reduced the cache misses and improved its throughput. They also

introduced data access improvements by aligning loop directions to optimize data

locality and improve cache misses. Parallelization was done using multithreading

and coloring methods to eliminate data dependency. Additionally, a blocked

coloring technique was employed to preserve data locality within blocks for efficient

multithreading of the SYMGS kernel, resulting in a substantial improvement in cache

efficiency. These optimizations resulted in a significant performance improvement

on the K Computers, and secured second position in November 2014 HPCG results

31

with 4.4% of ratio to HPL performance.

3.1.1.4 Sunway TaihuLight Supercomputer

In 2017 [39] presented the optimizations of HPCG on the Sunway many-core

processor. The authors introduced a technique called the Hierarchical Grid (HG)

algorithm, which they designed specifically for the Sunway architecture with an aim

to enhance the performance of HPCG on the Sunway TaihuLight supercomputer.

First, they used trivial methods to optimize the key kernels in MG V-cycle and

SpMV, such as Level-Scheduling (LS) and Multi-Coloring (MC) methods used for

the parallelism of the SymGS smoother. The authors proposed a new technique,

HG, after realizing the limitations, such as poor locality and limited parallelism of

the LS and MC. HG divided the domain into grids and subgrids mapped to the

Computing Processing Elements (CPEs) cluster. They also implemented an efficient

data prefetch mechanism and transfer scheme using DMA operations to manage data

exchange between Management Processing Elements (MPEs) and CPEs. They used

team collaborative computing to assign SpMV inner elements to CPEs and the border

elements to MPE. The paper also demonstrated the scalability of their approach and

comprehensive analysis of their parallel model and optimization strategies. They

claimed that their approach is not only for HPCG but also for other HPC applications

on the Sunway processor.

In 2018 [40]presented comprehensive optimizations, including blockmulti-coloring

on Sunway TaihuLight to exploit hardware characteristics. The authors developed a

series of optimization techniques for the HPCG benchmark on the heterogeneous

many-core architecture of the Sunway TaihuLight supercomputer. Due to the

high bandwidth requirements of HPCG, the main challenge was to improve the

32

performance of memory-bound kernels by leveraging the specific architecture of

Sunway TaihuLight, which has limited memory bandwidth as compared to its

computational power. The key optimizations employed in this study included a

block multi-coloring approach for parallelizing the SymGS kernel, which balanced

parallelism and convergence rate. Parallelism increased by dividing the computations

into blocks that can fit into the LDM of CPEs while maintaining the data locality.

They also implemented locality-aware layout transformations to improve data access

patterns by transforming the sparse matrix storage format into ELLPACK and

vectors access reordered to align with the parallelism scheme and improved the

access efficiency by grouping blocks with the same color. They also developed

a requirement-based data access method that mapped only necessary data for the

limited local memory of each core, which reduced the data movement overhead.

The required data for computations was accessed through DMA transfers, while

the on-chip register communications were used to exchange data between CPEs to

enhance efficiency. The researchers further decomposed operations into smaller

tasks to enable fine-grain overlapping of computation and data access. Additional

optimizations included code transformation, SIMD vectorization, index compression,

register message combination and local data management. This work has shown that

with careful optimizations used in this study, memory-bound applications like HPCG,

even on architectures with challenging memory bandwidth constraints, can efficiently

scale on large systems.

3.1.1.5 OceanLight Sunway Supercomputer

In 2021 [41] presented a series of optimization techniques intended to enable and

scale the HPCG benchmark on the new generation of the Sunway supercomputer,

which was equipped with over 42 million heterogeneous cores. Instead of using

33

multi-coloring or block multi-coloring techniques for parallelism, the authors

introduced a novel two-level blocking technique to exploit parallelism in the SymGS

kernel and maintain the convergence rate. This is the first paper that uses this

technique to optimize the HPCG on the Sunway supercomputer. Further, they

also proposed a fine-grained kernel fusion scheme that improves the data locality

to alleviate the bandwidth load on local storage and another notable work was

a low overhead thread coordination mechanism that transfers data between the

cores. They used a simplified ELLPACK sparse matrix format for better memory

alignment. These optimizations enabled to scale up to 653,760 MPI processes with

95.5% efficiency, and the optimized implementation scaled to over 42 million cores

and maintained a performance of 5.91 Pflops, utilizing 73.0% of the theoretical

memory bandwidth. The performance was further enhanced to 27.6 Pflops by

relaxing the constraints of the HPCG benchmark. This work [42] presented

effective optimization strategies for sparse linear solvers on modern heterogeneous

supercomputer architectures.

3.1.1.6 NEC SX-ACE Vector Supercomputer

In 2015 [43] explored various optimization techniques for HPCGbenchmark on the

SX-ACE supercomputer [44]. To take advantage of the architectural features of NEC

SX-ACE as the vector parallel processor with a high-bandwidth memory system,

the authors employed different data packing formats, including CSR, JAD [45], and

ELLPACK [46] for efficient packing of sparse matrix data and found ELLPACK

as most effective for its vector calculations and memory access efficiency. To

eliminate data dependencies during parallelization, eight-color multi-coloring [47]

and hyperplane [48, 49] techniques are also employed. They gained performance

improvements using a combination of JAD+coloring, ELLPACK+coloring,

34

Hyperplane with selective caching in the available on-chip Assignable Data Buffer

(ADB), and problem size tuning. [43] presented a series of optimizations on the

SX-ACE vector supercomputer, and their optimized implementation achieved 11.4%

efficiency in the case of using 512 nodes and over 30 Gflops on a single node.

In 2023 [50] presented an optimized HPCG implementation for long-vector

architectures in order to achieve a performance on high-end RISC-V accelerators,

mainly through kernel optimizations on enhancing memory hierarchy usage. This

work applied several optimizations to the HPCG benchmark and was of great

importance for the domain of HPC because it optimized the HPCG benchmark

for long vector architectures, targeting specifically the NEC VE and the RISC-V

vector extension (RISC-VV) platforms. The paper presented a portable and highly

optimized implementation of HPCG as open source [51] to long-vector architectures.

3.1.1.7 Near-Data Processing (NDP)Architecture

In 2017 [52] discussed the use of IBM Power8 near-data processors (NDPs) [53] in

the optimization of HPCG and Graph500 [54] benchmark. The Graph500 benchmark

focuses on breadth-first searches (BFS) in large graphs and stresses memory access

and global communication. The optimizations of the Graph500 benchmark are not

discussed as they are not part of the scope of this paper. For detailed information

on it, please refer to the original paper [52], and the distributed Graph500 details can

be found in [55]. The researchers employed a series of optimizations for the HPCG

using NDP architecture. They designed a system of 8 NDPs, which contain multiple

small and slow cores positioned close to the memory. The architecture also utilized

a shared memory approach with coherent access across the NDPs. They replace the

traditionalMPI +OpenMP approach with a nested OpenMPmodel for parallelization,

35

spawning threads for each NDP and its cores. They also restructured the code to

create a single parallel region encompassing the kernels instead of employing thread

teams, which significantly reduced the threading overhead. They determined that

a 4 KB data cache per NDP core was optimal to optimize the data locality and

cache. They tested different memory access granularities and found that a 64B access

granularity, combined with software prefetching, provided the best results when using

DDR3200 memory. They implemented the software prefetching for Dot Product

and WAXPBY kernels due to their data access patterns. However, the prefetching

was more challenging due to data dependency in SpMV and SymGS kernels and

the blocked multi-coloring approach for parallelism in these kernels. This study

highlighted the importance of inter-NDP bandwidth, which became equally important

as local memory bandwidth for the optimization of the applications. They optimized

inter-NDP communication for high bandwidth and low latency, utilizing an NDP

Access Point (NDP-AP) for efficient remote data access.

3.1.2 GPU-Based Systems

3.1.2.1 GPU-Accelerated Systems

In 2014 [56,57] presents an optimizedHPCGbenchmark usingCUDA forNVIDIA

GPU-accelerated supercomputers, namely Titan and Piz Daint. The key optimization

technique of this paper is graph coloring to enhance the parallelism of the SymGS

smoother. They employed the parallel coloring technique with the local maxima

[58, 59] and incorporated improvements proposed by [60]. They primarily focused

on parallelizing the SymGS. They used cuSPARSE library [61] and customized

CUDA-based kernels, and switched matrix data format from CSR to ELLPACK

so that the memory access coalesced, which was essential for optimizing GPU

36

efficiency. This paper contributed to optimizing memory-bound workloads on GPUs.

They benchmarked their optimized HPCG variant on both the Cray XK7 system at

Oak Ridge National Laboratory (ORNL) [62] and the Cray XC30 system at the Swiss

National Supercomputing Centre (CSCS) [63]. The Cray XK7 (Titan) has an AMD

Opteron processor and a Gemini interconnect that has a 3D torus topology [64]. The

Cray XC30 (Piz Daint) features an Intel Xeon processor and an Aries interconnect

that has a dragonfly topology [65]. This was the first CUDA implementation

of HPCG for GPUs, focused on parallelizing the SymGS smoother using graph

coloring techniques, and their implementation achieved the fastest per-processor

performance reported at that time when tested at full scale on large GPU-accelerated

supercomputers like the Cray XK7 at ORNL and the Cray XC30 at CSCS.

In 2016 [66] expanded on the aforementioned research with a more comprehensive

examination of the HPCG benchmark covering a broader range of GPU architectures,

incorporating improved optimization techniques, and providing a more detailed

analysis. Furthermore, it highlights the differences in the efficiency and prospective

of GPU and CPU executions, which have not been thoroughly examined in their

previous research.

3.1.3 Hybrid Architectures

3.1.3.1 Tianhe-2 Supercomputer

In 2014 [24] is one of the first papers to have focused on the optimization of

the HPCG benchmark for the multi and many-core architecture and has achieved

the performance of 580 Tflops on the Tianhe-2 supercomputer. They achieved

this by utilizing an approach that combines both multi-core and many-core Intel

Xeon and Xeon Phi co-processors. SpMV and SymGS are the core kernels of

37

many solvers [67, 68] including HPCG. Achieving high performance of symGS

smoother is particularly challenging due to its limitation in fine-grain parallelism

[69] as it is inherently sequential in reference to the implementation of the

HPCG. Focusing on the essential SymGS smoother, they uncover and evaluate

significant limitations of the parallelism and introduced a novel hybrid approach

combining the point-to-point synchronization in sparsification and block multi-color

reordering technique Algebraic Block Multi-Coloring (ABMC). To optimize the

data locality and memory access patterns, they also used the SELLPACK sparse

matrix data format. [70] focused on improving only the CPU-based system on

6,144 nodes by utilizing techniques such as red-black relaxation, SIMDization, loop

unrolling, forward-backward sweep fusion, and OpenMP parallelization, including a

reformulation of the mathematical equivalent CG algorithm to minimize collective

communication costs. They also replaced the default CSR format with a simplified

SELLPACK format, a variant of ELLPACK [71], which improved data locality and

access patterns in SpMV and SymGS. They also fused the residual computation in

SpMV and restriction operation into a single subroutine in geometric multigrid v

cycle inspired by the work [72]. Compared to prior work [24] on 12-core Intel Xeon

processors, this optimized HPCG achieved both higher single-CPU performance

and superior large-scale performance on Tianhe-2. [73] was an extension of the

previous study [70] for hybrid CPU-MIC based architecture on the Tianhe-2 platform.

Their previous work focused only on CPU-based optimization, while in this study,

they leveraged both Intel Xeon CPUs and Intel Xeon Phi coprocessors (many

integrated cores) MIC resources. Key optimizations include inner-outer subdomain

partitioning, asynchronous data transfer, red-black relaxation parallelization, and

optimized workload distribution across both CPU andMIC cores. [74] highlighted the

importance of multi-coloring techniques for Gauss-Seidel with SIMD-friendly sparse

38

matrix formats. [75] were especially concerned with improving the communication

in computer systems, and their solution involved pipelined CG variants, and that

kind of optimization was not allowed, as mentioned in Section 2.1.5.2. Although

all these papers achieved significant improvements in performance compared

to the reference implementation, they varied in their emphasis: [24] and [73]

selected the use of heterogeneous structures, [70] and [74] optimized for CPU-only

systems and [75] focused on communication efficiency. These works laid a solid

groundwork for optimizing HPCG and other applications on the world’ s most

powerful supercomputers, including Tianhe-2.

In 2016 [76] has optimized HPCG on Tianhe-2 using CPU + MIC heterogeneous

architecture. Based on the previous work [70, 73], the paper [76] presented a

comprehensive hybrid CPU-MIC algorithm for optimizing HPCG on the Tianhe-2

supercomputer. Key innovations included an improved inner-outer subdomain

partitioning strategy that better optimized the workload between the CPU and MIC

while reducing the amount of data transfer and a fused scheduling technique that

overlapped the computation and communication. The researchers employed forward

and backward fused algorithms and block multicolor parallelization techniques for

the SymGS kernel.

3.1.4 Other Architectures and Environments

3.1.4.1 FPGA-Based System

In 2021, the first known approach for reconfigurable hardware implementation

of HPCG was presented by [21]. They use different optimization techniques for

FPGA platforms, such as the Xilinx Alveo U280 FPGA. These optimizations include

memory access optimization using CSR format, with amodification from the standard

39

HPCG implementation by packing data into 512-bit for efficient memory reads. Their

implementation also supports multiple numerical precisions (double, single, half)

where some acceleration offers nearly linear performance. The Berkeley Roofline

model was used by the authors to validate their optimizations and show near-optimal

performance for Xilinx Alveo U280. They also emphasized that the performance is

mainly constrained by the memory bandwidth. The main contribution of this work

lies in its demonstration of the applicability of FPGA for HPCG, originally designed

to be run on CPUs and GPUs. This is an efficient, scalable implementation of the

HPCG benchmark that challenges CPU and GPU architectures. Their FPGA design

exhibited better power efficiency than GPUs and CPUs. They utilized HBMmemory

and customized data patterns for FPGA architecture.

In 2022, a bachelor student, Rahul Steiger’s thesis [77]presented an implementation

of the HPCG benchmark by optimizing FPGA-specific libraries of key kernels in

Python and then integrating them in an optimized version [21] of HPCG using the

DaCe framework, but the implementation was significantly slower than existing

version [21]. However, it laid the groundwork for future HPCG implementations

in Python by demonstrating how specialized kernel implementations could be

incorporated without modifying the high-level Python code and provided valuable

insights into the efficiency of the approach, potentially facilitating broader adoption of

FPGAs in HPC applications. He also conducted a performance comparison between

the FPGA implementation and other FPGA and CPU-based versions of HPCG.

3.1.4.2 Kokkos-Based

In 2016 [7] was a thesis work of a student from the College of Saint Benedict

and Saint John’s University. It presented the development of KHPCG [8], which

40

was the first try for creating a performance-portable version of the HPCG benchmark

using KOKKOS library [6,9,10],which is a hardware abstraction library. The author

replaced custom data types and parallel loops with Kokko’s multidimensional arrays

and also used KOKKOS parallel dispatch to replace the existing parallel loops. This

work focused on optimizing the HPCG benchmark to enhance its performance on

CPU and GPU architectures, with particular attention paid to hybrid systems that

include both types of processors. Two parallelization strategies for SymGS were

implemented, and the performance of these different preconditioning parallelization

approaches using levels and coloring techniques across OpenMP and CUDA was

compared, which showed that the coloring algorithm generally outperformed the

leveling algorithm. This work provided a basis for future work on creating a

more performance-portable reference implementation of HPCG that can be easily

optimized for different architectures. Its performance can presumably be stable across

different hardware platforms. However, the report [11] highlights the two primary

challenges in the practical implementation of the KHPCG. The utilization of the

coloring approach used for parallelism in KHPCG has raised concerns regarding the

validity of the results. Furthermore, due to compatibility issues with CUDA 11, the

sparse matrix-vector routine in the cuSPARSE module of Kokkos was deprecated.

These challenges highlight the necessity of a thorough restructuring of the KHPCG in

order to ensure that KHPCG functions optimally as a benchmark tool across different

platforms.

3.1.5 HPCG Benchmark Implementation Variants

The reference HPCG benchmark implementation can be found in the project git repository

[78] and on the official web [88]. Its latest release is 3.1, and we call it native HPCG

implementation. Open source and some Vendor-optimized variants modified based on the

41

Table 3.1 HPCG benchmark variants and implementation references

Sr# Variants References Reference HPCG Version Used
1 Native [78] N/A

CPU-Based
2 IBM [79] HPCGv2.4
3 Intel CPU [80] HPCGv3.0
4 ARM [81,82] HPCGv3.0
5 Sunway [42] HPCGv3.1
6 ALP/GraphBLAS [35] HPCGv3.1
7 VE native [51] HPCGv3.1

GPU-Based
8 Intel GPU [83] HPCGv3.1
9 NVIDIA [84,85] HPCGv3.1
10 AMD ROCm [86] HPCGv3.1

Others
11 FPGA Xilinx [87] HPCGv3.1
12 KHPCG [8] HPCGv2.4

older versions of the reference/native HPCG code listed in Table 3.1.

The optimizations are aimed at taking advantage of customization for the vendor-specific

platform and providing performance improvements to the specific architectures. Out of

these variants, Intel and NVIDIA implementations are not fully open source because they

used their architecture’s specific optimized kernels to enhance the overall performance of

the HPCG benchmark. Those kernels are proprietary and are designed for their respective

platforms. ARM, FPGA Xilinx, IBM, AMD ROCm, and others offer open-source variants

and are available for modifications. The details regarding the optimization of different HPCG

benchmark variants have been provided in Section 3.1 in much detail. To delve deeper into

the specifics of each variant, it is recommended to refer to the respective research works.

• ARM Optimized Variant: [30,31,89]

• Sunway Optimized Variant: [41]

• ALP/GraphBlas Optimized Variant: [32]

• FPGA Xilinx Optimized Variant: [21]

42

• VE Native Optimized Variant: [50]

• KHPCG Variant: The Kokkos-based HPCG variant [7]

However, for the IBM-optimized variant, no particular research paper has been written.

Some details are presented in [79], according to which the IBM research group fine-tuned the

CPU-only variant of HPCG for target processors such as IBM BGQ and POWER9 systems.

Using the reference HPCGv2.4, they analyzed that there are some issues with the coloring

method that decrease convergence speed and cache efficiency in the presented work [90]. To

resolve these problems, they employed a stencil discretization technique, which led them to

achieve performance improvement by rearranging the data into a uniform diagonal matrix

structure. They also work on architecture-specific fine-tuning and in the enhancement of the

backward prefetching of the SymGS smoother. Similarly, some details are found in [91,92] for

HPCG optimization work performed on the AMD ROCm platform for AMD GPUs, which

aims at enhancing compute intensity and scaling performance. This includes the usage of

HIP (Heterogeneous-Compute Interface) for GPU offloading, managing memory access in

a more efficient way, and device-specific tuning to improve performance. Moreover, the

optimization of HPCG for AMD processors focused on memory bandwidth optimal usage,

parallelism using OpenMP, as well as on optimizing the data locality using strategies such as

task scheduling and eliminating synchronization overhead to increase the performance of key

kernels SpMV and SymGS.

3.1.6 Summary

The high-level key differences in architecture-specific implementations are as

follows: GPU implementations focused on massive parallelism and graph coloring

techniques. CPU versions emphasized loop/kernel fusion, improved data layouts,

vectorization, OpenMP, andmulti-coloring techniques for parallelism. FPGA designs

43

customized memory access and compute paths. VE architecture aimed at long-vector

processing was supported by efficient utilization of memory hierarchy and vectorized

computation to increase the efficiency of vector machine architectures such as NEC

VE. GPUs achieved the highest raw performance, while FPGAs showed the best

power efficiency. The diverse optimization techniques have different strengths and

challenges tailored for different architectures on various supercomputers, including

Tianhe-2, K computer, Titan, Mira, Piz Daint, and Sunway TaihuLight, etc.

3.1.7 Supplementary Influential Works

The original authors of the HPCG benchmark, Jack Dongarra, Michael Heroux,

and Piotr Luszczek, have published several updates regarding the development

and enhancements of HPCG. These updates documented in publications such as

[3–5], highlighted the evolution of HPCG to accurately represent the computational

characteristics of modern scientific applications. In [3], they examined the influence

of the HPCG on the HPC community after one year. Subsequently, the studies

conducted in 2016, [4, 5] discussed the enhancements and improvements in HPCG.

Besides the aforementioned literature on optimizing HPCG, some workshops and

conference presentations have also been contributed, but most of their full content

is not easily accessible. For example, [93–95] are cited by various research papers,

marking them as influential in HPCG optimization. While the full content of these

is not publicly accessible, their repeated citation in the literature underlined their

importance in shaping the research and optimization direction of HPCG. Also, the

paper [96] optimized the conjugate gradient using a pipelined algorithm of conjugate

gradient on CPU+GPU architecture. As this kind of optimization is not allowed for

the optimization of HPCG benchmarks, we skipped the details as they are not aligned

44

with the scope of the study.

45

CHAPTER 4. Technique and Trends in HPCG

This chapter discuss the different data formats. It also goes into more detail

about the significant parallelization approaches employed by the other researcher,

as mentioned in the Chapter 3.

4.1 Data Formats and Storage Strategies

4.1.1 Common Sparse Matrix Formats

Data format for sparse matrix representation is very important in the optimization

of the SpMV. Some of the most common and basic data formats are listed in the

Table 4.1 and illustrated in Figure 4.1

Figure 4.1 Illustration of the basic data formats. Reproduced from [98]

46

Table 4.1 Common sparse matrix data formats

Name Abbreviation Description

Coordinate COO

COO format stores three arrays of row indices,
column indices, and the values of non-zero entries of
the matrix A. It is the simplest and most flexible
format but is not memory efficient for large matrices.

Compressed
Sparse Row CSR

CSR also uses three arrays which include the values
array, column indices array, and the row pointer array,
and it relatively offers good performance because of
memory efficiency.

Compressed
Sparse
Column

CSC
CSC is like CSR but column oriented. It is the
transpose of CSR and is more useful for column-wise
operations.

ELL ELL

ELL format stores two arrays of the same size, values
array, and the column indices array. It organizes the
non-zero elements in each row into a fixed-length
array and pads shorter rows with zeroes if necessary.
More efficient for matrices with a bounded number of
non-zeros per row and enables efficient parallel
processing and vectorization but can lead to
significant memory overhead for matrices with
varying row lengths.

Diagonal DIA

DIA stores diagonals in a separate dense matrix,
suitable for matrices with a banded structure, reduces
memory footprints, and allows fast access to
diagonals but is less efficient for general sparse
matrices.

References: [97,98]

There are also different variants of these basic data formats, such as sliced,

blocked, and hybrid variants. Sliced variants usually improve the load balancing and

parallelization of the operation, while blocked versions enhance the cache utilization

and vectorization. Hybrid versions leverage the benefits of multiple formats. Other

than these, some variants with bitmask and compression techniques are used to

47

reduce the memory footprints. Some specialized format variations are also used

to handle sparse matrix irregularities for specific optimizations based on the types

of sparse matrices. These formats help balance storage, computation, and matrix

pattern or architectural compatibility. [98] conducted a comprehensive survey on

sparse matrix-vector multiplications. For more detailed insights and a thorough

understanding of these data formats, please refer to their work [98].

Sparse matrix operations in other applications and in HPCG are affected by

these formats. These formats help in solving sparse matrix processing problems

like computational performance, memory optimization, load balancing, and

hardware-specific tunings. The use of these specific formats depends upon the

characteristics of the matrix and the target platform.

4.1.2 Novel Data Structures for HPCG

The reference implementation of the HPCG benchmark uses the CSR data format.

Upon reviewing the researchers’ work on HPCG optimization, we found that most

of them identified ELLPACK or its variant, Sliced ELLPACK (SELLPACK), as the

primary data format for enhancing the performance of benchmark. Some of them

restructured the format into other formats like JAD, DIA, etc., but they also confirmed

that the ELLPACK is most suitable, especially for the vector processing architectures.

The Table 4.2 summarize the papers reporting about the use of these data formats and

provides a list of papers which investigate the application of these data formats for

the optimization of HPCG.

The choice of data format has a great impact on both performance and memory

consumption in HPCG. ELLPACK though introduced memory overhead due to fixed

length arrays, but enhancing parallelization and reducing memory access latencies.

48

Table 4.2 Data formats reported in literature of the HPCG optimization

Data
Formats Reference Architecture

ELLPACK [40,41,43,50,56,66,73–
76]

Tianhe-2 Supercomputer,
SX-ACE supercomputer,
Hybrid CPU-MIC, Intel
Xeon multi-core processors
and Xeon Phi many-core
coprocessors, GPU-focused
(NVIDIA CUDA), Tesla
K20X, K40 GPUs, Cray
XK7, XC30, Sunway
supercomputer, Sunway
TaihuLight Supercomputer,
NEC VE and RISC-VV

SELLPACK [24,27,70,73,76]

Titan (Cray XK7) and
Piz Daint (Cray XC30)
supercomputers, Hybrid
CPU-MIC

JAD [43] SX-ACE supercomputer

DIA [74] SX-ACE supercomputer,
Tianhe-2 Supercomputer

CSR/
Modified
CSR

[7,21,28,29,31,32,36,38,
39,43,52,66,77]

SX-ACE supercomputer,
K Computer, GPU-focused
(NVIDIA CUDA), Tesla
K20X, K40 GPUs, Cray
XK7, XC30, Hybrid
CPU-MIC, Near-data
processing (NDP)
architecture, Sunway
many-core processor,
ARMv8 (Cavium
ThunderX2), FPGA Xilinx
Alveo U280, IA x86

Overall, the use of these formats, together with parallelization techniques, brings

significant memory efficiency and improve performance of HPCG.

49

4.2 Parallelization Optimization Techniques

The parallelization approaches are of most importance, which is generally difficult

to optimize because of sparse matrix and dependencies. MPI, OpenMP, CUDA,

pipelining and vectorization indeed serve as fundamental parallelization solutions

which already employed in HPCG. MPI for distributed memory parallelism,

OpenMP for the shared memory parallelism, CUDA for GPU based parallelism and

Vectorization for vector-based architecture parallelism are already in use and most

of these require additional optimization strategies. These parallelization techniques

are effective in HPCG depending with the type of hardware and problem size to be

solved. Hence, it is often the case that a combination of techniques like coloring for

intra-node parallelism, MPI for inter-node communications, and pipelining to have

multiple operations overlap, are employed on different supercomputing architectures.

Coloring appears to be most effective in respect of parallelizing the main kernels of

HPCG, SpMV and SymGS smoother. The coloring technique assist to achieve a

good trade-off between the number of independent tasks parallelism and the rate

of convergence for the solution. Scheduling pattern of these tasks also influence

on the HPCG parallelization. Performance of the parallel computations can be

improved providing they manage to correctly assess the dependencies of different

computational tasks and properly schedule them. This is particularly important in the

multigrid component of HPCG as the operations in each of the levels of the grid have

certain degree of dependencies.

4.2.1 Coloring

The basic concept of the coloring technique is the distance-1 or distance-2 coloring

discussed in the literature [99, 100]. The distance-1 coloring technique, also known

50

as vertex coloring, ensures that no two adjacent vertices have the same color, which

helps to identify sets of vertices for parallel processing. In contrast, the distance-2

coloring technique is an extension of distance-1 coloring, ensuring that two vertices

within a distance of 2 do not have the same color.

Multi-Coloring (MC):

In multi-coloring, the vertices are divided into multiple color classes as shown in

Figure 4.2. There are different variants of multi-coloring techniques, and the data

associated with the same color can be processed in parallel. The colors are assigned in

such a way that they help in balancing the parallelism and convergence in the iterative

solvers.

Red-Black (RB)Coloring:

In multi-coloring, red-black coloring is the basic and most well-known

coloring technique used in the optimization of the SymGS smoother in multigrid

preconditioner. In red-black coloring, the grid is divided into two colors, red

and black, alternatively, where adjacent nodes follow a chessboard pattern as

shown in Figure 4.3. Parallel processing is performed such that the red colors

Figure 4.2 Multi-coloring, reproduced from [89]

51

have no dependency on the black color data sets and can be processed in parallel

independently. It is a very common technique in structured grid-like iterative

problems because it is simple to implement and allows for efficient parallelization

by preserving the convergence rate in iterative methods like Gauss-Seidel. This

technique is mostly suitable for multi-core architectures and is effective for

small-scale parallelism with a slow convergence rate.

Figure 4.3 Chess board pattern, red black coloring

Multi-Coloring with 4 or 8 Colors:

The 4 or 8 colors multi-coloring approach is suitable for many-core architectures,

providing relatively better parallelism than RB with improved convergence. This

technique is more complex than RB due to potential cache locality issues. The

performance and efficiency of the 4-color and 8-color multi-coloring techniques

are different. The 4-color outperforms the 8-color in HPCG [74] as it takes fewer

iterations for convergence, whichmeans faster computation with less overhead, hence

being efficient and scalable for large problems. In contrast, the 8-color technique

takesmore iterations, which increasing the overhead, and impacts on the convergence,

as the problem size increases.

52

Block Multi-Coloring (BMC)

In the block multi-coloring technique as shown Figure 4.4, groups of vertices are

blocked such that data arrangement within the blocks remains sequential to improve

data locality. Coloring is applied to the blocks instead of individual vertices. This

technique reduces coloring overhead and enhances cache performance in hierarchical

memory systems. It is more complex to implement and requires careful selection of

block sizes.

Figure 4.4 Block Multi-Coloring, reproduced from [38]

Algebraic Block Multi-Coloring (ABMC)

The Algebraic Block Multi-Color (ABMC) [47] is a parallel processing technique

while solving large sparse linear systems of equations. ABMC as shown in Figure 4.5

involves two main steps, blocking and coloring algorithmically proposed in [101].

Blocking divide the matrix into sub matrices which helps in placing the data in

sequence that is complementary to the memory caches for fast access and processing

of data. Coloring applied to these blocks with different colors in order to reflect

their relative dependence upon one another. The blocks of the same color do not have

dependency on each other, so one color block can be handled at a time through parallel

threads efficiently. It enhances computational effectiveness because numerous blocks

can be tackled at once which shortens the time taken to solve the problem. This is

especially helpful in situations where there is the use of iterative solvers with large

53

sparse matrices as encountered in scientific and engineering computations [24].

Figure 4.5 Algebraic block multi-coloring, reproduced from [47]

Hybrid Coloring

In the hybrid coloring technique, different coloring techniques are combined to

balance data load and parallelism according to the computational power of different

nodes in heterogeneous systems. These techniques are merged based on the target

architecture.

In HPCG, these coloring techniques are used to create independent sets of matrix

rows/columns that can be processed in parallel. This improves the performance

of sparse matrix operations and multigrid preconditioners. In HPCG, coloring

techniques help improve parallelization, load balancing, and convergence rate by

modifying memory access patterns, which aids in better cache access in complex

memory hierarchies. As a result, this improves system scalability. The choice of

coloring techniques in HPCG can vary depending on the target architecture, problem

structure, data sparsity pattern of the matrix, and the required optimization trade-off

between parallelism and convergence rate. It is crucial to note that the choice

of coloring technique in HPCG optimization is coupled with other optimization

techniques and data formats.

54

Figure 4.6 A Multi-level task dependency graph, reproduced from [89]

4.2.2 Multi Level Task Dependency Graph

Instead of relying on coloring, this technique creates a multi-level task dependency

graph (TDG) whose nodes correspond to the elements of the grid, and the edges

correspond to the dependencies among these elements. A graph is divided into

levels as shown in Figure 4.6, which are processed one after the other, so that

the computation order requirement is satisfied. The levels range from 0 to N.

Because elements of the same level do not depend on each other, and all can be

computed simultaneously. Unlike coloring techniques this scheme respects the data

dependency order and therefore does not require any number of additional iterations

to achieve the same residual. This approach, however, changes the order in which

the data required to process. Unlike the Gauss-Seidel method, which strictly follows

a row-by-row sequence, this one calculates any row whose dependencies are met;

hence, several rows can be processed at one time. It speeds up some computations, but

it affects spatial and temporal locality negatively, thereby slowing down the overall

performance. Another issue is of the variation in the parallelism of the different levels,

with little or no parallelism in the beginning and towards the end, but more in the

55

middle.

4.2.3 Hyperplane

The hyperplane parallelization technique is accessing the elements in a diagonal

fashion so that elements in a ’hyperplane’ can be proces in parallel, by avoiding

the data dependencies. Unlike the multi-coloring techniques, in which all the

elements with the same color are processed in parallel, in the hyperplane parallelism

mechanism the calculations are done diagonally across an array. This helps remove

data dependencies that would cause bottlenecks on parallel processing and, therefore,

facilitates higher parallelism. By using this technique, performance improve due to

the faster convergence, which results in an overall improvement in computational

efficiency. This technique was applied in the optimization of HPCG for SX-ACE

supercomputer by [43].

Figure 4.7 Hyperplane (2D), reproduced from [43]

4.2.4 Hierarchical Grid (HG)

The Hierarchical Grid (HG) technique as shown in Figure 4.7 is a novel approach

which discretizes computational domain into a cascaded structure of sub-grids that

56

would mimic the physical layout of the Core Processing Elements (CPEs). The

technique involves several key steps: sub-domain partitioning where the complete

grid is split into 64 divided sub-grids or CPE mesh cluster pattern having 8 CPEs

each; a special pattern of execution which maintains parallelism and data dependency

on each other; and, the management of data to use the little available LDM in each

CPE to the most efficient it can be. The HG technique enhances the data transfer and

pre-fetching mechanism to reduce the overhead of DMA operation and also syncs

CPEs data for data consistency. This is the way how partitioning strategy helps to

achieve parallelism and get benefits connected to locality. This technique introduced

by [39] to enhance the parallel execution of computations on the structure of the

Sunway processors.

4.2.5 Two-level Blocking Scheme

The two-level blocking scheme was introduced in [41] as a novel method for

rearranging the sparse matrix for the SymGS kernel in HPCG. The objective

of this approach was to demonstrate sufficient parallelism while simultaneously

maintaining a fast convergence rate. In the first level, the sparse matrix was

divided into m large blocks, which were referred to as layers, in accordance with

the original order. In order to preserve their interdependence, these layers were

processed sequentially. At the second level of each specific layer, the directed

graph derived from this layer was subjected to a graph partitioning method, which

was subsequently followed by a coloring process on the generated blocks as shown

in Figure 4.8. This ensured that, in parallel processing, the smaller blocks of the

same color can be processed independently of the other differently colored blocks.

To prevent performance degradation, these blocks were designed to be as large as

possible, due to the limited capacity of the Local Device Memory (LDM) . Data

57

exchange and synchronization were required prior to transitioning to the subsequent

color. This method outperformed other methods, such as multi-coloring and block

multi-coloring, by maintaining a balance between parallelism and convergence rate.

Furthermore, the two-level blocking scheme facilitates vector reuse across successive

layers and the fusion of the SymGS backward sweep with the subsequent SpMV

operation. Due to the abovementioned reasons, two-level blocking scheme is suitable

for the architecture of the Sunway supercomputer in terms of strong parallelism and

fast convergence.

Figure 4.8 A two-level blocking scheme adapted from [41]

4.2.6 Block Multi-Color Scheduling (BMC) Scheduling

Block Multi Color Scheduling (BMC) Scheduling as shown in Figure 4.9 is

an efficient parallelization technique designed to optimize algorithms such as the

SymGS. The grid points are colored by traditional multi-coloring approach in such

a manner that enables the processing of the same colored data points in parallel.

Nevertheless, thesemethodsmay result in adverse consequences, including a decrease

58

in convergence rate and a loss of data locality. The original approach is expanded

by the necessity of grouping grid points into neighboring blocks and coloring these

blocks. This enhances data localities and contributes to the acceleration of parallel

execution rates. The BMC Scheduling is a more advance approach used by [29, 36]

and the overview of this approach is as follows:

• Block Partitioning: The grid is partitioned into blocks, where the neighboring

grid points are grouped into a block. This enhances data locality in comparison

to conventional point-based coloring techniques.

• Coloring Block: Blocks are assigned colors such that blocks of the same color

have no dependencies and can be processed in parallel. This usually involves

by using multiple colors across different dimensions of the grid.

• Asynchronous Execution: Instead of synchronizing threads after processing of

each color, blocks are processed asynchronously. Threads process new blocks

asynchronously as soon as their dependencies resolved, and this approach

increased core utilization and reduced idle time.

• DependencyManagement: A mechanism keeps track of dependencies between

blocks of different colors. As a block complete its processing, it updates the

status of other dependent blocks on it.

• Synchronization Sparsification: Synchronization barriers are minimized and

overall performance is improved by employing different techniques to reduce

unnecessary dependencies between blocks.

• Dynamic Scheduling: A mechanism that ensures the availability of a block for

processing when all of its dependencies are met, and enable load balancing

by threads to select newly accessible blocks without the need for global

59

synchronization.

• Adaptive Block Sizing: Selection of block size determined based on the

available threads and on the grid dimensions. This helps in balance the load

and parallelism maintaining the convergence rate

• Bi-directional Sweeps: The algorithm consists of forward and backward

sweeps, follow the dependency hierarchy among the blocks, established by the

coloring scheme.

This approach improves parallelism, optimizes memory access patterns, and scales

performance for multi-core setup, mostly effective in unstructured matrices.

Figure 4.9 Block multicoloring with synchronization sparsification involves (a) the
blockmulticoloring process and the dependencies between the blocks, where a dashed
arrow represents a redundant dependency. (b) After synchronization sparsification,
the scheduling of tasks is adjusted to avoid unnecessary synchronization, reproduced
from [29]

60

CHAPTER5. Parallel Implementation of Symmetric

Gauss–Seidel (SymGS)Variants

5.1 Reference SymGS and its parallel variants

Algorithm 2 is a standard symmetric Gauss-Seidel method, is referred to as the

Reference SymGS as implemented in the HPCG, which is inherently sequential.

During the forward sweep, each row employs the updated values from the preceding

rows and the initial values for the subsequent rows conversely, the backward sweep

processes them in the reverse manner. This approach does not include data reordering

and parallelization, serving as the baseline for comparison with other methods.

Algorithm 2 Symmetric Gauss-Seidel - Reference SymGS
Require: Matrix A ∈ Rn×n, right-hand side vector r ∈ Rn, initial guess x ∈ Rn

Ensure: Updated solution vector x
1: Forward Sweep:
2: for i = 1, 2, . . . , n do
3: for j ∈ nonzeros in ith row do
4: xi =

ri−
∑

j Aijxj+Aiixi

Aii

5: end for
6: end for
7: Backward Sweep:
8: for i = n, n− 1, . . . , 1 do
9: for j ∈ nonzeros in ith row do
10: xi =

ri−
∑

j Aijxj+Aiixi

Aii

11: end for
12: end for

Previous research on stencil computations in multi-core systems by [102–105]

61

resulted in improved ways to access memory and schedule tasks for structured

grid-based solvers like SymGS. One of the most popular ways to improve SymGS

performance is the multi-coloring method [24, 30, 106–108], which uses colors to

group independent tasks for parallel processing, and also level scheduling [50, 69,

89] by restructuring of computations according to dependency levels to enhance

parallelism.

In Multi-Color SymGS routine we employs coloring to divide rows into

independent sets, with the ability to process rows concurrently within a color. This

helps assign colors to rows so that the adjacent rows have different colors, facilitating

parallelism in forward and backward sweep. However, the number of colors needed

depends on the structure of the matrix.

In Level-Scheduled SymGSwe starts by creating a dependency graph of the matrix

A, where the row number is the node and the dependencies are given as non-zero

entries in the matrixA. It then computes for the in-degrees, and these are actually the

number of other rows that it depends on for calculation. When there is no dependency

of a node on other nodes, that node will belong to the initial level L0, and it can be

processed in parallel with others. Subsequent levels are created by considering all the

dependent nodes and lowering their in-degrees throughout progressive levels until

all nodes are placed in a level. Once the level schedule is developed, the algorithm

executes forward and backward sweeps subsequently, to modify the solution vector

x.

Hybrid Jacobi-Gauss-Seidel methods [109–112] combine parallel friendly Jacobi

with improved GS convergence, suggesting potential for scalable SymGS approach.

For Hybrid Jacobi-Gauss-Seidel variant we integrates the parallelism of the Jacobi

method with the accelerated convergence of GS by partitioning the rows of a sparse

62

matrix A into two groups according to the number of non-diagonal nonzeros. Rows

with more connections are designated to the Jacobi set and updated concurrently.

In contrast, the other rows constitute the GS set and are updated sequentially. The

algorithm initially executes a parallel Jacobi forward sweep, subsequently performs

sequential GS forward and backward sweeps, and concludes with a final parallel

Jacobi update. The Jacobi ratio (jr) governs the division between the two methods.

5.2 Our Designed Variants

5.2.1 Temporal Block SymGS

Algorithm 3Temporal Block SymGS divides thematrix using a spatial block of size

b, and then iteratively, updates are performed over the selected number of temporal

steps s. These steps begin with the forward sweep from the first block through the

last. In each block, dependent blocks are first updated, then updated by the rows of

a current block using the GS update, based on preceding rows updates and diagonal

elements of the matrix. This ensures that each row is optimized using the values

that have been recently obtained. After completing the forward sweep, the blocks are

scanned from the last to the first block, and similar changes are made in reverse order.

Each block performed several temporal iterations in both of the sweeps to ensure that

in each block, the solution vector x is updated before moving to the next block. We

then use the final solution vector for a residual check. This method improves the

convergence over reference SymGS methods.

5.2.2 Over Relaxation SymGS

Algorithm 4 Over-Relaxation SymGS concept inherited from the JOR approach

which uses Jacobi updates by over-relaxation to improve the convergence rate of the

63

Algorithm 3 Temporal Block SymGS
Require: Sparse matrix A ∈ Rn×n, residual vector r, initial solution vector x, desired block size b, and temporal

steps s
1: Let n be the number of rows in A
2: Compute the number of spatial blocks: m = ⌈n/b⌉
3: Initialize block starts: block_starts[i] = i · b, ∀i ∈ {0, 1, . . . ,m− 1}
4: Initialize block sizes: block_sizes[i] = min(b, n− block_starts[i])
5: Determine dependencies for each block based on non-zero elements in A
6: Let l be the index representing non-zero elements in each row of A
7: for each block k from 0 tom− 1 do ▷ Forward Sweep
8: for each temporal step t from 1 to s do
9: for each dependent block j in depBlocks[k] do
10: Update rows in block j parallely:

xnewj =
rj −

∑
l Ajlx

old
l +Ajjx

old
j

Ajj

11: end for
12: Update rows in block k parallely:

xnewi =
ri −

∑
j Aijx

old
j +Aiix

old
i

Aii
, ∀i ∈ block[k]

13: Copy xnewi to xoldi for the next iteration
14: end for
15: end for
16: for each block k fromm− 1 to 0 do ▷ Backward Sweep
17: for each temporal step t from 1 to s do
18: for each dependent block j in depBlocks[k] do
19: Update rows in block j in reverse order parallely:

xnewj =
rj −

∑
l Ajlx

old
l +Ajjx

old
j

Ajj

20: end for
21: Update rows in block k in reverse order parallely:

xnewi =
ri −

∑
j Aijx

old
j +Aiix

old
i

Aii
, ∀i ∈ block[k]

22: Copy xnewi to xoldi for the next iteration
23: end for
24: end for
25: Copy xnew to x for residual check
26: return Updated vector x

Jacobi method. However, we employed a forward and backward sweep to enhance

the solution vector x by utilizing previously known values alongside newly computed

values. The algorithm computes in each row and stores in a temporary vector instead

64

Algorithm 4 Over Relaxation SymGS
1: Input: Sparse matrix A ∈ Rn×n, right-hand side vector r ∈ Rn, initial guess x ∈ Rn

2: Output: Updated solution vector x
3: Ensure that the length of vector x matches the number of columns in matrix A
4: n← number of rows in A
5: ω ← over-relaxation factor
6: Initialize a temporary vector xtemp ← x
7: Forward Sweep:
8: for i = 1 to n in parallel do
9: for j ∈ nonzeros in ith row do
10: s← ri −

∑
j Aijxj

11: x
temp
i ← s+xiAii

Aii

12: x
temp
i ← xi + ω

(
x
temp
i − xi

)
13: end for
14: end for
15: x← xtemp

16: Backward Sweep:
17: for i = n to 1 in parallel do
18: for j ∈ nonzeros in ith row do
19: s← ri −

∑
j Aijxj

20: x
temp
i ← s+xiAii

Aii

21: x
temp
i ← xi + ω

(
x
temp
i − xi

)
22: end for
23: end for
24: x← xtemp

25: return x

of updating the resultant vector x. The temporary update is subsequently over-relaxed

with the assistance of the factor ω, which facilitates dependency resolution. The

forward sweep executes row processing in parallel from 1 to n, whereas the backward

sweep processes rows in reverse order from n to 1, also in parallel. Excessive

relaxation modifies the update as xtempi = xi+ω(x
temp
i −xi), which seeks to expedite

error reduction by utilizing both temporary and current values.

A variety of relaxation-based methods had been explored in the past [113–115] for

GS:

• Successive Over-Relaxation (SOR) [116] is a point-wise relaxation technique

that employs a single forward sweep with a relaxation factor ω. Despite its

sequential nature and absence of symmetry limiting parallel execution.

65

• Symmetric SOR (SSOR) extends SOR with a backward sweep, creating

symmetry suitable for PCG preconditioning of SPD systems. It remains

inherently sequential despite its mathematical advantages.

• Jacobi Over-Relaxation (JOR) employs a temporary vector approach in the

Jacobi method. Eliminating coupling achieves total parallelism; however, it

results in significantly slower convergence rates.

• Jacobi-SOR (JSOR) employs domain-partitioned sub-grids to integrate

one-line SOR updates within a Jacobi method. This provides moderate

parallelism but experiences convergence degradation proportional to partition

count.

• Multi-Color SOR employs graph coloring to facilitate concurrent updates

of same colored points. Although additional colors compromise spectral

efficiency for increased parallelism, two-color schemes predominantly

preserve SOR convergence characteristics.

• Parallel SOR (PSOR) [113] reorganizes point-wise SOR through domain

partitioning and strategic communication. Exhibits convergence rates

comparable to sequential SOR.

• Block Parallel SOR (BPSOR) [114] minimizes communication overhead by

performing block updates that converge at a rate comparable to sequential block

SOR, thereby extending PSOR to block partitions through multi-type ordering.

• Parallel Symmetric SOR (PSSOR) symmetrizes BPSOR [115] undermulti-type

ordering to yield an SPD preconditioner similar to SSOR. Even for highly

anisotropic problems with significant scalability, it preserves nearly sequential

SSOR convergence.

66

• Our Overrelaxation-SymGS variant employs the JOR like buffer technique

within the forward-backward SymGS framework. Thismethod ismathematically

valid as a PCG smoother, exhibiting symmetry and compatibility with parallel

processing.

5.2.3 Wavefront SymGS

Algorithm 5Wavefront SymGS utilizes thewavefronts to organize and schedule the

updates in an iteration. The wavefront technique uses each coordinate point (x, y, z)

in a three-dimensional grid nx × ny × nz has a ‘wave index’ derived from the sum

x+ y + z.

Algorithm 5Wavefront SymGS Method
1: Input: Sparse matrix A ∈ Rn×n, right-hand side vector r ∈ Rn, initial guess x ∈ Rn

2: Output: Updated solution vector x
3: Initialize xold ← x, xnew ← x
4: Define wavefrontsWk for k ∈ [0, nx+ ny + nz − 2]
5: Forward Wavefront Update:
6: for k = 0 to num_waves− 1 do
7: for each row i ∈Wk (in parallel) do
8: for j ∈ nonzeros in ith row do
9: s← ri −

∑
j Aijxold,j

10: s← s+Aiixold,i
11: xnew,i ← s

Aii

12: end for
13: end for
14: xold ← xnew
15: end for
16: Backward Wavefront Update:
17: for k = num_waves− 1 to 0 do
18: for each row i ∈Wk (in parallel) do
19: for j ∈ nonzeros in ith row do
20: s← ri −

∑
j Aijxold,j

21: s← s+Aiixold,i
22: xnew,i ← s

Aii

23: end for
24: end for
25: xold ← xnew
26: end for
27: Copy Updated Solution:
28: for i = 1 to nrow (in parallel) do
29: xi ← xnew,i
30: xold,i ← xnew,i
31: end for
32: Return: Updated vector x

67

The wavefront consists of all points (or rows) on the same diagonal plane (x +

y + z = constant). This means that all points (or rows) that lie on the same plane

diagonal form a wavefront. We group points with the same sum into the same wave

so that all neighbors of a point are in earlier or later waves, allowing concurrent

updates. We loop over every valid point (x, y, z), compute the row index and place

this index into a local buffer corresponding to that wave. These local buffers are

then merged in a thread-safe manner to form the final waves array, where waves[k]

contain all row indices whose coordinates sum to k. Once these wavefronts are

defined, theWavefront SymGS algorithm updates the solution vector x in two sweeps,

using double-buffering to ensure numerical accuracy. For each wave Wk, rows are

updated in parallel by computing s = ri −
∑

j Aijxold,j , adding back the diagonal

part Aiixold,i, and dividing by Aii to get the new xnew,i To refresh subsequent waves,

updated values are copied into xold at the end of each wave. The backward sweep

reverses the wave order but uses the same update strategy to respect the latest updated

neighbors.

5.3 Experiments and Results

5.3.1 Methodology

The Figure 5.1 shows the high-level execution flow of HPCG benchmark and its

relationship with SymGS. It begins with a standard CG function that initializes

necessary parameters and performs the operations like computing SpMV, WAXPBY,

and dot products. An iterative loop runs for a maximum number of iterations or

until convergence is reached. Preconditioning triggers the multigrid preconditioner

function (ComputeMG), which at different grid levels uses SymGS as pre- and post-

smoother. The right side shows the standalone SymGS variants implementation,

68

Figure 5.1 Diagram of execution flows between our SymGS variants implementation
and the HPCG iterative solver, emphasizing distinctions in preconditioning and
iterative methodologies.

which follows its own iterative process with convergence checks and residual norm

calculations. The key difference between the standalone SymGS and HPCG is

that, while it uses a linear iterative framework, and HPCG employs a recursive

multigrid method with SymGS serving as a critical smoother component to enhance

convergence at different grid levels. We evaluated different variants based on various

parameters and subsequently selected the most effective one for use in HPCG. In

HPCG, we substituted the pre- and post- smoother SymGS with our implemented

SymGS (the step highlighted in cyan color) and assessed the performance of HPCG.

5.3.2 Settings

We conducted experiments on Intel Xeon Phi 7250 (KNL) and Intel Xeon

Gold 6148 (SKL) processors. On KNL we used -xMIC-AVX512, whereas SKL

utilizes -xCORE-AVX512, to optimize for the AVX-512 instruction set tailored

for the Many Integrated Core (MIC) architecture. Additional flags comprise -O3,

-qopt-prefetch=0, -qopenmp, and -std=c++17. The mpiicpc compiler is utilized

69

for MPI-based execution.

A MPI+OpenMP parallelization strategy is utilized in all experiments. The total

number of OpenMP threads allocated per MPI process is established according to the

following relation:

OpenMP Threads per MPI Process =
Total Number of Cores

Number of MPI Processes
.

KNL featuring 68 cores and SKL with 40 cores. For instance, when only 2 MPI

processes are specified, each each process is assigned 34 and 20 OpenMP threads on

KNL and SKL, respectively. This mapping strategy is consistently applied across all

experiments unless otherwise specified.

5.3.3 Performance metrics

SymGS variants performance was evaluated using various metrics. The following

metrics were used to evaluate performance and compare the variants with the

reference SymGS implementation:

• Setup (s): Time spent on pre-processing or setup before computational

iterations.

• Compute (s): Time spent in the main routine to perform computations.

• Total (s): Total execution time, calculated as:

Total Time = Setup+ Compute.

• Iterations: Total number of iterations performed until convergence or meeting

the stopping criteria.

70

• Avg/Iter (s): Average time per iteration, computed as:

Avg/Iter (s) =
Compute Time
Iterations

.

• ErrorMetrics: Relative Error (Rel. Error),Root Mean Square Error (RMSE),

andMeanAbsolute Error (MAE) are used for measuring the difference between

the resultant vector after computation and the reference SymGS resultant

vector.

• Gflops: Performance in gigaflop operations per second.

• Speedup: Ratio of runtime improvement of reference SymGS compared to the

improved method:

Speedup =
Total Time(reference)
Total Time(method)

.

• Improvement: Increment in Gflops compared to the baseline reference

SymGS.

Our study analyzed SymGS variants, each utilizing different optimization parameters.

The tested parameter ranges were as follows:

• MultiColor(MC)-c:

c ∈ {2, 4, 6, 8},

where c is the number of colors used.

• TemporalBlocking(TB)-a-b:

a, b ∈ {2, 4, 8, . . . , 64},

71

where a is the number of spatial blocks, which divides the total number of rows

into blocks, and b is the number of temporal steps used within each iteration/

block.

• Hybrid_Jacobi_GS:

jr ∈ {0.5, 0.6, . . . , 1.0},

Jacobi ratios (jr) in increments of 0.1, ranging from 0.5 to 1.0.

• OverRelaxation-ω:

ω ∈ {0.2, 0.4, . . . , 1.4},

where overrelaxation parameter omega (ω) was adjusted from 0.2 to 1.4 in

increments of 0.2

5.3.4 Results on Knights Landing (KNL)

5.3.4.1 SymGS variants

We assessed the performance of Symmetric Gauss–Seidel (SymGS) variants on

an Intel Xeon Phi multi-core processor featuring 68 cores, concentrating on various

problem sizes associated with matrix dimensions 163, 323, 643, and 963. We

utilized a single MPI process, leveraging all 68 threads, and for problem sizes

up to 643, established the SymGS tolerance at 10−8. For larger problem sizes

(> 643), the tolerance was adjusted to 10−6 to decrease computation time, as

more strict tolerance criteria would necessitate additional iterations for convergence.

Only the most promising parameter combinations that yielded some significant

performance considered for discussion were included in Table 5.1, while less effective

configuration results were omitted for the sake of clarity and conciseness.

72

The Multi Color SymGS variant performance results indicate that the setup time is

high for 2 and 6 colors and relatively reduced when utilizing 8 colors. A similar

pattern was observed in larger problem sizes, where 2, 4, and 6 colors exhibit

greater setup times compared to 8 colors. Nonetheless, for some problem sizes, the

computation time is reduced with 4 colors in comparison to 8 colors. The number of

iterations is concurrently increasing across 8 colors for all problem sizes. Though, the

computational time for 4 colors costs less than that of 8 colors; however, the total time,

inclusive of setup time, increases when the problem size gets bigger. Furthermore,

the overall performance in Gflops improves with 8 colors for larger problem sizes,

as the setup time also increases with increasing problem sizes when utilizing fewer

than 8 colors. The reason for this is that the eight colors are evenly allocated across all

rows in disjoint subsets; however, with fewer colors, some inter-dependent rows share

identical colors. Despite attempts to recolor neighboring rows, certain dependent

rows still retain the same color, ultimately impairing performance on larger problem

sizes. In comparison to the reference SymGS, Multi Color SymGS exhibits an

increase in the number of iterations and setup time; however, the average time per

iteration is significantly reduced, resulting in enhanced overall performance relative

to the reference SymGS.

The Temporal Block SymGS approachwas evaluated using different configurations.

Temporal Block variants significantly reduce the compute time, with the total time

decreasing as the number of temporal steps increases. For TB-2-64 attains the

minimal total time and converges in the fewest iterations. The Temporal Blocking

approach significantly decreases the iterations needed for convergence. At the

problem size of 323, the reference SymGS necessitates 487 iterations, whereas

TB-2-64 requires merely 8 iterations, demonstrating its efficacy in enhancing

73

computational efficiency. Although the average time per iteration increases slightly

with more temporal blocks. In terms of performance, Temporal Blocking variants

achieved remarkable gains in Gflops, with TB-2-2 delivering a 2.6× improvement

over the reference SymGS. Additionally, the speedup achieved increases with the

number of blocks, reaching up to 29× for TB-2-64, making it the most effective

variant among those tested in terms of total computational time.

Table 5.1 Performance comparison of SymGS variants for different problem sizes on
KNL.

Variant Setup(s) Compute(s) Total(s) Avg/Iter(s) Iterations Rel. Error RMSE MAE Gflops Speedup Improvement
Problem Size: 163, Total number of rows: 4,096

Reference 0.0000 0.4341 0.4341 0.0033 133 - - - 0.1206 1.0000 1.0000
MultiColor-4 0.0299 0.2550 0.2850 0.0014 180 2.47E-08 4.20E-10 3.03E-10 0.2485 1.5231 2.0613
MultiColor-8 0.0016 0.3156 0.3172 0.0016 199 3.39E-08 5.82E-10 4.34E-10 0.2468 1.3684 2.0474
TemporalBlocking-2-2 0.0031 0.1497 0.1528 0.0023 64 6.37E-08 1.05E-09 8.36E-10 0.1648 2.8416 1.3674
TemporalBlocking-2-16 0.0030 0.0649 0.0679 0.0081 8 6.37E-08 1.05E-09 8.36E-10 0.0463 6.3898 0.3843
TemporalBlocking-2-64 0.0031 0.0555 0.0586 0.0278 2 6.37E-08 1.05E-09 8.36E-10 0.0134 7.4075 0.1114
Hybrid_Jacobi_GS-0.9 0.0015 0.7852 0.7867 0.0015 511 7.14E-08 1.19E-09 9.46E-10 0.2556 0.5518 2.1199
OverRelaxation-1.0 0.0000 0.3607 0.3607 0.0014 256 6.37E-08 1.05E-09 8.36E-10 0.2792 1.2034 2.3162
Wavefront 0.0080 1.0243 1.0323 0.0064 161 4.04E-08 6.66E-10 5.31E-10 0.0614 0.4205 0.5090
LevelScheduled 0.0029 0.8941 0.8971 0.0067 133 - - - 0.0583 0.4838 0.4838

Problem Size: 323, Total number of rows: 32,768
Reference 0.0000 13.8172 13.8172 0.0284 487 - - - 0.1183 1.0000 1.0000
MultiColor-4 1.7956 6.5644 8.3600 0.0098 672 1.80E-07 3.95E-09 3.00E-09 0.2697 1.6528 2.2806
MultiColor-8 0.0125 6.9822 6.9947 0.0093 749 2.59E-07 5.68E-09 4.32E-09 0.3593 1.9754 3.0381
TemporalBlocking-2-2 0.0245 2.5850 2.6095 0.0107 241 3.90E-08 8.31E-10 6.38E-10 0.3099 5.2949 2.6203
TemporalBlocking-2-16 0.0242 0.6527 0.6770 0.0211 31 7.22E-07 1.58E-08 1.20E-08 0.1536 20.4108 1.2992
TemporalBlocking-2-64 0.0242 0.4458 0.4700 0.0557 8 1.22E-06 2.66E-08 2.03E-08 0.0571 29.3996 0.4830
Hybrid_Jacobi_GS-0.9 0.0116 22.6729 22.6845 0.0118 1,926 5.47E-08 1.20E-09 9.12E-10 0.2849 0.6091 2.4089
OverRelaxation-1.0 0.0000 9.4386 9.4386 0.0098 964 3.90E-08 8.31E-10 6.38E-10 0.3427 1.4639 2.8977
Wavefront 0.0023 11.2886 11.2909 0.0189 597 1.04E-08 2.07E-10 1.58E-10 0.1774 1.2237 1.5002
LevelScheduled 0.0255 9.7603 9.7858 0.0200 487 - - - 0.1670 1.4120 1.4120

Problem Size: 643, Total number of rows: 262,144
Reference 0.0000 440.4997 440.4997 0.2352 1,873 - - - 0.1178 1.0000 1.0000
MultiColor-4 114.4299 189.5306 303.9606 0.0729 2,599 6.23E-07 1.85E-08 1.38E-08 0.2368 1.4492 2.0109
MultiColor-8 0.1034 201.6544 201.7578 0.0695 2,903 8.65E-07 2.56E-08 1.91E-08 0.3985 2.1833 3.3840
TemporalBlocking-2-2 0.1964 77.1227 77.3191 0.0826 934 2.47E-08 7.16E-10 5.37E-10 0.3346 5.6972 2.8410
TemporalBlocking-2-16 0.1967 20.4646 20.6613 0.1749 117 1.79E-07 5.32E-09 3.97E-09 0.1568 21.3200 1.3318
TemporalBlocking-2-64 0.1974 16.7922 16.9896 0.5597 30 2.09E-06 6.21E-08 4.63E-08 0.0489 25.9276 0.4153
Hybrid_Jacobi_GS-0.9 0.1195 633.7727 633.8922 0.0848 7,470 2.53E-08 7.86E-10 5.71E-10 0.3264 0.6949 2.7715
OverRelaxation-1.0 0.0000 139.3856 139.3856 0.0682 2,045 2.20E-07 6.54E-09 4.74E-09 0.3961 3.1603 3.3637
Wavefront 0.0134 205.6821 205.6956 0.0893 2,303 3.20E-09 6.47E-11 4.88E-11 0.3101 2.1415 2.6332
LevelScheduled 0.2711 172.6534 172.9245 0.0922 1,873 - - - 0.3000 2.5474 2.5474

Problem Size: 963, Total number of rows: 884,736
Reference 0.0000 2574.5603 2574.5603 0.8289 3,106 - - - 0.1140 1.0000 1.0000
MultiColor-4 1339.0005 1079.5646 2418.5651 0.2479 4,355 1.15E-04 4.12E-06 3.05E-06 0.1701 1.0645 1.4926
MultiColor-8 0.3492 1168.2227 1168.5719 0.2415 4,837 1.62E-04 5.80E-06 4.29E-06 0.3910 2.2032 3.4310
TemporalBlocking-2-2 0.6584 429.4003 430.0587 0.2769 1,551 2.60E-06 9.19E-08 6.83E-08 0.3407 5.9865 2.9894
TemporalBlocking-2-16 0.6520 140.8085 141.4605 0.7258 194 5.97E-06 2.14E-07 1.58E-07 0.1295 18.1999 1.1368
TemporalBlocking-2-64 0.6118 83.7539 84.3657 1.7093 49 1.33E-04 4.76E-06 3.53E-06 0.0549 30.5167 0.4814
Hybrid_Jacobi_GS-0.9 0.4621 3605.4660 3605.9281 0.2908 12,397 5.21E-06 1.46E-07 1.05E-07 0.3247 0.7095 2.8320
OverRelaxation-1.0 0.0000 1931.9599 1931.9599 0.3114 6,204 2.60E-06 9.19E-08 6.83E-08 0.3033 1.3363 2.6691
Wavefront 0.1024 4241.8401 4241.9425 1.1104 3,820 3.72E-06 1.32E-07 9.82E-08 0.0851 0.6069 0.7464
LevelScheduled 0.9873 2220.6792 2221.6666 0.7150 3,106 - - - 0.1321 1.1588 1.1588

Wavefront SymGS performance remains good in mid-sized problems but is inferior

to the reference SymGS in both small and large problem sizes. The Level Scheduled

SymGS demonstrates improvement in performance at a mid-sized problem and

74

Figure 5.2 Performance comparison of SymGS variants in terms of Gflops across
problem sizes (163, 323, 643, and 963) on 1 MPI process with OpenMP threads=68.

surpasses the reference SymGS. The Hybrid Jacobi GS SymGS consistently performs

better with jr = 0.9 across all problem sizes. OverRelaxation SymGS performance

varies but relatively remains good at at ω = 0.8, 1.0, and 1.4; however, it fails

to satisfy HPCG convergence criteria when the diagonal entries of the matrix are

exaggerated and scaled to 106, not achieving convergence within two iterations,

except for ω = 1.0. Consequently, OverRelaxation is confined to ω = 1.0 to adhere to

HPCG constraints. Among the evaluated routines, Temporal Block SymGS exhibits

the greatest speedup and optimal computation times across all problem sizes, with

satisfactory performance improvement in Gflops. Overall MultiColor, Temporal

Blocking, and OverRelaxation SymGS variants demonstrate superior performance

in Gflops as compared to other variants, as shown in Figure 5.2.

75

5.3.4.2 HPCG

We used the above-discussed SymGS variants in HPCG and then evaluated the

performance. These SymGS variants are configured within HPCG as follows:

• SymGS variants used in HPCG:

– MultiColor with c = 8.

– Temporal Blocking with a = 2, b = 2.

– Hybrid Jacobi GS with jr = 0.9.

– OverRelaxation with ω = 1.0.

Performance results for these variants are shown in Figure 5.3.

Figure 5.3 illustrates a comparison of HPCG results based on the SymGS variants

across different problem sizes, ranging from 643 to 1923. The reference executes

Figure 5.3 Performance of HPCG using the different SymGS variants across different
problem sizes (643 to 1923) on 1 MPI process with OpenMP threads=68.

76

the native HPCG without any optimization. We examined the different variants of

SymGS in HPCG and assessed their performance compared to the reference using 1

MPI process and 68 threads on single node and observed the Overrelaxation SymGS

is relatively the most efficient in comparison to other variants.

The HPCG with the Overrelaxation SymGS variant is regarded as the most

effective, achieving an average of 7× performance improvement across all tested

problem sizes. However, its performance reduced slightly with larger problem sizes.

Conversely, Level Scheduled exhibits entirely different trends, with its performance

enhancing as the problem size increases. For 643, it achieves a performance of

2.92×, while for 1923, it attains 5.6×, demonstrating the suitability of this method

for larger problem sizes. Temporal Blocking exhibits a moderate and relatively

linear improvement in performance as the problem size increases, with an average

improvement ratio of 3.5×, While Wavefront SymGS also exhibit the moderate

performance improvement and relatively performing better on themid-sized problems

with average performance improvement of 3.8× with some drop in performance on

small and large problem sizes.

MultiColor begins with a substantial improvement of 5.7× for 643, but its efficacy

diminishes progressively as the problem size increases, yielding an improvement

of merely 1.52× for 1923. The Hybrid_Jacobi_GS are comparable, exhibiting a

modest average improvement of 2.2×, accompanied by minimal oscillations that

suggest performance stability across the different problem sizes. The OverRelaxation

performs the best consistently, and the Level Scheduled performs well, especially

with larger problem sizes. As has been seen before, all of the SymGS variants

including Temporal Blocking and Wavefront provide a stable performance.

77

Figure 5.4 Performance and Bandwidth Summary of HPCG at a problem size of 1603
using different SymGS variants

We observed that the native implementation of HPCG performs better with the

MPI-only configuration, each MPI process only has one thread, so our optimized

routine has no room for parallelism. As a result, the routine operates almost

sequentially. Additionally, the use of an extra temporary vector within each

thread further impacts performance, making it slightly inferior to the reference

implementation, when tested on the problem size of 1603. The total number of

78

4,096,000 equations and 109,215,352 non-zero terms are computed at this problem

size.

Figure 5.4 (a) illustrates the bandwidth summary extracted from the HPCG

summary reports. OverRelaxation SymGS enhanced bandwidth utilization. The total

bandwidth with convergence and optimization (C and O) is improved as compared

to the reference implementation, thereby improving overall performance.

Figure 5.4 (b) illustrates the performance of DDOT,WAXPBY, and SpMV is nearly

identical across all SymGS variants, except for the enhanced performance of DDOT

when employing the Level Scheduled SymGS. This improvement may contribute to

the overall performance improvement of HPCG performance using Level Scheduled

in large problem sizes. However, we observe performance variability in MG as we

only optimize SymGS which functions as a pre-and post-smoother within MG. It

indicates that the performance improvement of MG within HPCG is a result of the

performance improvement of SymGS.

5.3.4.3 Scalability Analysis

We tested the MPI+OpenMP version of HPCG on a problem size of 1603, ensuring

that it used enough memory as required by the HPCG specification, which requires

that at least quarter of the system memory be utilized. The system under test is

configured with KNL nodes, each with 96 GB of memory per node, where only 86

GB is available for use. As the number ofMPI processes increases, the memory usage

rises significantly, and with MPI processes exceeding 20, the job fails due to memory

limitations.

The performance trends as shown in Figure 5.5 indicate that the HPCG with

reference SymGS scales well with an increasing number of MPI processes. However,

79

(a)MG (Multigrid)

(b) HPCG

Figure 5.5 Performance comparison of (a) MG (Multigrid) and (b) HPCG on KNL
for Reference and OverRelaxation using different MPI+OpenMP configurations on
multiple nodes (1, 2, 4, and 16) for a problem size of 1603.

in Overrelaxation, the SymGS phase is parallelized using OpenMP threads, which

introduces a trade-off. When the number of MPI processes increases, the room

for OpenMP-based parallelization reduces, limiting parallel execution. thus the

overall performance drops. We have evaluated and recorded the performance of MG,

extracted from the HPCG summary reports also presented, as shown in Figure 5.5 (a).

However, there exists a notable difference in the performance of HPCG and MG, as

illustrated in Figure 5.5, which indicates that the MG performance is relatively good

compared to HPCG. This highlights the need to improve the other kernels and reduce

80

communication and optimization overhead to further improve the overall performance

of HPCG.

The best performance is achieved with 8 MPI processes per node and 8 threads.

The performance of HPCG using OverRelaxation SymGS reaches 192.82 Gflops

on 16 Nodes. However, on 20 MPI processes per node with only three threads,

performance degradation exhibits at higher node counts, demonstrating that balancing

MPI processes and OpenMP threads is crucial for optimal parallel efficiency.

5.3.5 Results on Skylake (SKL)

In this section we presented the performance evaluation of the SymGS variants and

HPCG on the Intel Xeon Gold 6148 (Skylake) processor, which features two sockets,

each containing 20 cores, resulting in a total of 40 cores, each core operates at a

frequency of 2.40 GHz. Each node is equipped with 192 GB of available memory.

5.3.5.1 SymGS variants and HPCG

The performance of SymGS variants on SKL resembles the trends observed

on KNL, OverRelaxation and MultiColor SymGS remain the top two performer,

respectively. Table 5.2 presents a comparative analysis of SymGS variants for a

problem size of 323 (32,768 rows) and Figure 5.6 (on left) illustrates this comparison

in terms of Gflops.

OverRelaxation SymGS with ω = 1.4 outperformed the other variants, reducing

the execution time to 0.9627 seconds and achieving a 1.88× acceleration compared to

the reference SymGS. This improves performance by 2.65×, resulting in 2.39 Gflops.

The MultiColor SymGS variant with eight colors is the second best performer, with

a total time of 1.0924 seconds, a 1.66× speedup over the reference, and a 2.55×

81

Table 5.2 Performance comparison of SymGS variants for a problem size of 323.

Variant Setup(s) Compute(s) Total(s) Avg/Iter(s) Iterations Rel. Error RMSE MAE Gflops Speedup Improvement
Problem Size: 323, Total number of rows: 32,768

Reference 0.0000 1.8145 1.8145 0.0037 487 - - - 0.9005 1.0000 1.0000
MultiColor-2 0.4710 1.0472 1.5182 0.0014 731 2.49E-07 5.47E-09 4.16E-09 1.6154 1.1952 1.7940
MultiColor-4 0.2755 1.0750 1.3505 0.0016 675 1.92E-07 4.21E-09 3.21E-09 1.6770 1.3436 1.8623
MultiColor-6 0.2839 1.1479 1.4318 0.0017 672 1.74E-07 3.83E-09 2.90E-09 1.5747 1.2673 1.7487
MultiColor-8 0.0023 1.0901 1.0924 0.0015 749 2.59E-07 5.68E-09 4.32E-09 2.3003 1.6610 2.5546
TemporalBlocking-2-2 0.0047 0.5568 0.5615 0.0023 241 3.90E-08 8.31E-10 6.38E-10 1.4401 3.2318 1.5993
TemporalBlocking-2-8 0.0036 0.3902 0.3938 0.0064 61 3.37E-07 7.37E-09 5.61E-09 0.5197 4.6073 0.5771
TemporalBlocking-2-32 0.0039 0.2991 0.3030 0.0187 16 1.22E-06 2.66E-08 2.03E-08 0.1771 5.9877 0.1967
TemporalBlocking-4-2 0.0040 0.6022 0.6061 0.0033 181 1.40E-07 2.42E-09 1.84E-09 1.0019 2.9936 1.1126
TemporalBlocking-4-8 0.0041 0.4765 0.4806 0.0099 48 4.16E-07 9.76E-09 6.96E-09 0.3351 3.7755 0.3721
TemporalBlocking-4-32 0.0041 0.5674 0.5715 0.0405 14 1.34E-06 2.93E-08 2.23E-08 0.0822 3.1748 0.0913
Wavefront 0.0007 4.0938 4.0945 0.0069 597 1.04E-08 2.07E-10 1.58E-10 0.4892 0.4432 0.5433
LevelScheduled 0.0039 4.0046 4.0084 0.0082 487 - - - 0.4076 0.4527 0.4527
Hybrid Jacobi-GS 0.5 0.0030 4.2873 4.2904 0.0026 1,629 5.31E-07 9.89E-09 6.96E-09 1.2739 0.4229 1.4147
Hybrid Jacobi-GS 0.9 0.0029 3.0606 3.0635 0.0016 1,926 5.47E-08 1.20E-09 9.12E-10 2.1093 0.5923 2.3424
OverRelaxation 1.0 0.0000 1.3511 1.3511 0.0014 964 3.90E-08 8.31E-10 6.38E-10 2.3939 1.3430 2.6585
OverRelaxation 1.4 0.0000 0.9627 0.9627 0.0014 687 5.22E-08 1.12E-09 8.58E-10 2.3943 1.8849 2.6590

Figure 5.6 Performance comparison of SymGS variants (left) and their impact in
HPCG (right) on the problem size of 323 on 1MPI porcess with OpenMP threads=40.

increase in Gflops.

In Temporal Blocking SymGS variants, specifically TB-2-2, outperform its other

combinations. Hybrid Jacobi-GS with jr = 0.9 results in a 2.34× increase in Gflops,

indicating that combining Jacobi parallelism and GS updates improves performance.

The Wavefront and Level Scheduled SymGS variants do not perfrom good on

Skylake for this problem size. In fact, they both perform worse than the reference

implementation.

In the HPCG benchmark, the OverRelaxation SymGS variant was used with ω =

1.0, however its performance is slightly lower compared to ω = 1.4, as it converges

82

within just two iterations on the exaggerated diagonal, a design feature of HPCG,

which exaggerates diagonal dominance to assess spectral convergence properties.

These SymGS variants were used in HPCG, includingMultiColor SymGSwith c = 8,

Temporal Blocking SymGS with (a, b) = (2, 2), Hybrid Jacobi-GS with jr = 0.9,

and OverRelaxation with ω = 1.0.

First we evaluated the reference implementation of HPCG on SKL without

modifications to identify the optimal problem size for performance. We have

observed that HPCG performs better on the problem size of 323 on a single node

for possible combinations of MPI and OpenMP settings.

Figure 5.6 (on right) shows the performance evaluation of HPCG using these

variants for the problem size of 323 with a single MPI process using all 40 threads

on Skylake. The HPCG with OverRelaxation SymGS variant, achieves the good

performance as in KNL. MultiColor SymGS and Temporal Blocking SymGS also

show notable improvement compared to the reference implementation, although these

are lag behind OverRelaxation.

5.3.5.2 Scalability Analysis

Since the problem size of 323 is insufficient to challenge the memory subsystem

or satisfy the memory requirements specified by HPCG, the larger problem size

of 2883 is assessed in multi-node configurations. We have evaluated the HPCG

using the Reference and OverRelaxation SymGS. We have optimized only the

SymGS component of the MG in HPCG. We recorded the performance results of

HPCG using the Reference and OverRelaxation SymGS variants, and additionally

showcased the performance of MG, extracted from the HPCG summary reports

as shown in Figure 5.7. The MG performance using the OverRelaxation SymGS

83

Figure 5.7 Performance of MG and HPCG for a problem size of 2883 using different
MPI+OpenMP configurations across multiple SKL nodes.

surpasses the Reference SymGS across all node counts, ranging from single-node

to sixteen-node configurations. On a single node utilizing 1 MPI process and 40

threads, OverRelaxation attains 14.65 Gflops. With an increase in the number of

MPI processes, the performance of OverRelaxation significantly surpasses that of

the Reference, attaining 21.99 Gflops at 8 MPI processes, in contrast to only 9.49

Gflops for the Reference. On 16 nodes, OverRelaxation achieves 159.1 Gflops at

one MPI process, indicating an approximate 10× improvement over the Reference,

and consistently surpasses the Reference across all MPI configurations, ultimately

attaining 329.7 Gflops at 8 MPI processes per node, in contrast to 146.5 Gflops

for the Reference on 16 Node configuration. The job terminated due to memory

84

limitations when increasing the MPI processes per node for this large problem size.

However, we observed that with small problem sizes, increasing the number of MPI

processes per node results in a reduction of threads per MPI process for parallelism

in the Overrelaxation SymGS variant. When there are only one or two threads

per MPI process, the potential for parallelism is minimal, resulting in performance

that is slightly inferior to the Reference implementation. A comparable trend is

noted for HPCG, wherein OverRelaxation consistently improves performance across

all configurations. On a single node utilizing one MPI process, OverRelaxation

attains 8.64 Gflops, nearly 6× surpassing the 1.48 Gflops recorded by the Reference

SymGS. As the number of node increases, OverRelaxation maintains a significant

improvement, especially in settings with a fewer MPI count, where the SymGS

solver can exploit enhanced OpenMP-based parallelism. On two nodes with one

MPI process, OverRelaxation attains 16.38 Gflops, whereas the Reference achieves

2.76 Gflops, indicating an approximate 6× improvement. On increasing MPI

counts, specifically 8 MPI processes across 16 nodes, OverRelaxation achieves

204.86 Gflops, in contrast to 151.84 Gflops for the Reference, illustrating sustained

performance improvements despite rising communication overhead. The results

demonstrate that OverRelaxation SymGS offers significant local computational

acceleration and enhanced scalability in multi-node setups, rendering it a viable

alternative to the Reference SymGS, particularly for memory-constrained, sparse

matrix challenges such as those encountered in HPCG andMG. However, there exists

a notable difference in the performance of HPCG andMG, as illustrated in Figure 5.7,

which indicates that the MG performance is relatively good as compared to HPCG.

This highlights the need to improve the other kernels and reduce the communication

and optimization overhead to further improve the overall performance of HPCG.

85

5.4 Observations and Discussion

Many researchers have explored different methods to enhance HPCG performance

on different architectures, with prominent techniques including the conversion of data

formats fromCSR to ELLPACK and the application ofmulti–coloring strategies, such

as Blocked Multi–Coloring.

Multi-coloring and level scheduling-based approaches have previously been

explored by other researchers, particularly for 27-point stencil problems. However,

our study introduces OpenMP-based parallel SymGS techniques, including Temporal

Blocking, Wavefront, Hybrid Jacobi-GS, and Overrelaxation variants, which

significantly differ from existing implementations in the literature. Notably, prior

research employing similar techniques predominantly addressed stencil problems

with fewer points, whereas our study specifically targets the more complex 27-point

stencil configuration used in the HPCG benchmark. Among the introduced

techniques, Temporal Blocking is particularly advantageous for scientific problems

that require SymGS methods to converge within fewer iterations. A 4-color approach

on some problem sizes gives relatively better computational performance than the

8-color approach and its convergence rate is also better than using the 8-color, but its

setup time is higher. Further, within the HPCG, it properly works on the coarse grids;

however, on the fine grid with 4 colors the overall HPCG result becomes invalid due

to a failure in the symmetry test. To solve this, additional dependency handling is

required, which diminishes the overall performance gain, so we have used 8 colors

in our HPCG results comparisons.

After investigating several SymGS variants, our findings indicate that the

Overrelaxation approach using a relaxation factor of ω = 1 mirrors the reference

implementation in both the forward and backward sweeps by employing a temporary

86

buffer vector for partial updates. This design enables parallel execution and proves

to be simpler and more efficient than multi–coloring based dependency resolution.

While previous research has emphasized that multi-coloring techniques are optimal

for enhancing SymGS performance, our study demonstrates that the Overrelaxation

method produces good results.

5.4.1 Parallelism

When we run P MPI ranks per node while keeping the problem size per node

constant at N3, each MPI rank handles a smaller subproblem of size (N ′)3 with

N ′ =
N
3
√
P
,

and the available parallelism per node for the SymGS smoother is reduced

accordingly. In this setting, the overall number of tasks that can be executed in

parallel (each row’s work is roughly proportional to the number of nonzeros in that

row) is given by

Parallelism = P

(
N
3
√
P

)2 1

7
=

3
√
P
N2

7
.

In a 3D 27-point stencil, used in HPCG, each grid point depends on itself and its

six immediate neighbors, one in each direction (left, right, front, back, up, and down),

resulting in a total of seven dependencies per point or matrix row. This expression

shows that, with P MPI ranks per node, the maximum parallel performance (in terms

of the number of concurrent tasks or operations that can be exposed) scales as 3
√
P

[24].

This mathematical form represents the possible room for performance optimization

in multi-MPI configuration. On 1 MPI process we observed the performance

87

improvement of around 7 − 10×, whereas the overall performance on multi-MPI

processes is only 2× for MG and overall 1.4× of HPCG. This indicate that there

is still significant room for further optimization in SymGS, the overall performance

improvement also required the optimization of other computational kernels within

HPCG, particularly the SpMV.

This study presented and assessed different parallel variants of SymGS, enhancing

their performance for SPD matrices in the HPCG benchmark. The implementation

of these variants demonstrated enhanced parallel performance without compromising

on numerical stability, resulting in an increase in computational efficiency for solving

large sparse linear systems. The implementations of Temporal Blocking, Over

Relaxation, and Multi Color variants of SymGS surpass the Reference SymGS.

The Over Relaxation SymGS variant demonstrated increase in performance when

integrated into the HPCG benchmark compared to the native HPCG. These results

underscore the efficacy of the optimized SymGS variants for integration into HPCG,

yielding computational improvement.

Experimental results validated on Intel Xeon Phi (KNL) and Intel Xeon Gold

(SKL) platforms utilizing MPI+OpenMP configurations demonstrated performance

improvement compared to the native implementation, with our proposed SymGS

variants. The study provides a theoretical framework, pseudo-code algorithms, and

insights into parameter optimization that enhance the robustness and scalability of

SymGS in contemporary high-performance computing settings.

Our investigation of various SymGS variants reveals that the overrelaxationmethod

with ω = 1 replicates the reference implementation in both forward and backward

sweeps by utilizing just a temporary buffer vector for partial updates. This design

facilitates parallel execution and demonstrates simplicity and efficiency compared to

88

multi-color based dependency resolution approach.

Based on this study, the promising research directions for HPC researchers are to

apply hybrid techniques such as multi-coloring with temporal blocking to enhance

the convergence of multi-coloring approach.

Future work includes Kokkos-based implementations. We also plan to adopt

ELLPACK data layout and optimize other HPCG kernels such as SpMV for improved

overall performance.

89

CHAPTER 6. KoHPCG – High-Performance

Conjugate Gradient Benchmark Program on

Kokkos Performance Portability Framework

In KoHPCG implementation, we rewrite all computational kernels using Kokkos

constructs, preserving the original algorithmic structure of HPCG.

• Used Kokkos::View for managing multi-dimensional arrays across execution

spaces.

• Used Kokkos::parallel_for and Kokkos:: parallel_reduce to enable

thread-level and data-level parallelism.

• Used Kokkos::fence and memory traits to ensure consistency across host and

device execution.

• For now, we used default execution and memory space using Kokkos::

DefaultExecutionSpace and ExecSpace::memory_space.

90

6.1 Kokkos-Based Implementation

DDOT

Kokkos::parallel_reduce(”DDOT”, n,

KOKKOS_LAMBDA(const local_int_t i, double andupdate) {

update += x.values(i) * y.values(i);

}, local_result);

Kokkos kernels also offer this operation as kokkosBlas::dot(...). In our current

results, we utilized KokkosBlas operation because Kokkos kernels internally employ

the architecture-tuned implementation for enhanced portability.

WAXPBY

Kokkos::parallel_for(”WAXPBY”, Kokkos::RangePolicy<>(0, n),

KOKKOS_LAMBDA(const int i) {

w(i) = alpha * x(i) + beta * y(i);

});

SpMV

Kokkos::parallel_for(”SpMV”, Kokkos::RangePolicy<>(0, nrow),

KOKKOS_LAMBDA(const local_int_t i) {

double sum = 0.0;

int nnz = (int)(nonzerosInRow_d(i));

for (int j = 0; j < nnz; j++) {

sum += matrixValues_d(i, j) * xv(mtxIndL_d(i, j));

}

yv(i) = sum;

});

91

Kokkos kernels also provide this operation as KokkosSparse::spmv(...). In our

current implementation, we utilized the Compressed Sparse Row (CSR) based SpMV

offered by KokkosSparse, as it provides us the relatively good HPCG performance

when combined with our optimized SymGS kernel. We noted that the Block Sparse

Row (BSR) format exhibited superior SpMV performance compared to CSR when

evaluated only on SpMV.

SymGS

Kokkos::View<double*, Layout, MemorySpace> x_temp(”x_temp”, x.localLength);

deep_copy(x_temp, xv);

Kokkos::parallel_for(”Forward_Sweep”,

Kokkos::RangePolicy<ExecSpace>(0, nrow),

KOKKOS_LAMBDA(const local_int_t i) {

double sum = rv(i);

int cur_nnz = nnzInRow(i);

double diag_val = diag(i);

double x_i = xv(i);

for (int j = 0; j < cur_nnz; j++) {

const local_int_t col = indices(i, j);

sum -= values(i, j) * xv(col);

}

sum += x_i * diag_val;

x_temp(i) = sum / diag_val;

});

Kokkos::fence(”Forward␣Sweep”);

Kokkos::parallel_for(”Backward_Sweep”,

92

Kokkos::RangePolicy<ExecSpace>(0, nrow),

KOKKOS_LAMBDA(const local_int_t idx) {

const local_int_t i = nrow - 1 - idx;

double sum = rv(i);

int cur_nnz = nnzInRow(i);

double diag_val = diag(i);

for (int j = 0; j < cur_nnz; j++) {

const local_int_t col = indices(i, j);

sum -= values(i, j) * x_temp(col);

}

sum += x_temp(i) * diag_val;

xv(i) = sum / diag_val;

});

Kokkos::fence(”Backward␣Sweep”);

Given the inherently sequential nature of the SymGS operation, we optimized

and parallelized it by employing a temporary vector to eliminate the dependency.

This straightforward modification requires reading and writing to different memory

locations to avoid conflicts arising from partial updates, thereby facilitating the

parallelization of the SymGS operation. This approach permits concurrent forward

and backward execution, data dependencies are not violated, and improves the

performance of the SymGS operation, which overall contributes in the performance

improvement of HPCG.

MG

Multigrid (MG) is composed of SymGS, SpMV, Prolongation, and Restriction

operations. In our implementation, we modified SpMV and SymGS to the Kokkos

93

programming model, so we only update the Prolongation and Restriction operations

with required modifications using Kokkos::parallel_for.

6.2 Experiments and Results

6.2.1 Experimental Setup

By using Kokkos and Kokkos Kernels, we developed the Kokkos-based variant of

HPCG, which we named KoHPCG. We configured the Kokkos and Kokkos Kernels

packages using Trilinos with CMake 3.26.2 and C++17 with Intel MKL, MPI, and

OpenMP support.

We conducted experiments on two different hardware platforms on the KISTI

Nurion system [117], Intel Xeon Phi 7250 (KNL) and Intel Xeon Gold 6148 (SKL)

processors. All experiments employed an MPI+OpenMP parallelization strategy.

The number of OpenMP threads assigned per MPI process was determined using the

relation:

OpenMP Threads per MPI Process =
Total Number of Cores

Number of MPI Processes
.

TheKNL processor features 68 cores per node, along with 96 GBDDR4 and 16GB

high-bandwidth memory (HBM). The SKL processor consists of 40 cores per node

with 192 GB of memory. For example, when two MPI processes are launched on

KNL and SKL, each process is assigned 34 and 20 OpenMP threads, respectively.

This threads per MPI process mapping scheme was consistently applied across all

test cases unless stated otherwise.

We conducted experiments on 1, 2, 4, 8, and 16 nodes. In the results, the notation

94

TP:40_N:2_MN:20_T:3 signifies that the result pertains to 20 MPI processes with 3

OpenMP threads per process across 2 nodes, totaling 40 MPI processes. TP denotes

the total MPI processes, N signifies the number of nodes, MN represents the MPI

processes per node, and T refers to the OpenMP threads utilized per process. The

results are organized in ascending order based on the number of nodes and the MPI

processes per node.

6.2.2 Results on Knights Landing (KNL)

Weevaluated the performance of HPCGvariants as shown in Figure 6.1, Reference,

KHPCG, and KoHPCG (OUR), focusing on kernels performance in Gflops, total

memory bandwidth, and overall HPCG performance, on problem sizes 643 and

1603 on KNL single node and 1 MPI process with 68 threads. Evaluated on just

1 MPI process because of the limitation of KHPCG for fair performance comparison.

The Reference version, representing the original HPCG v3.1, shows very bad MG

performance, under 0.6 Gflops, because of the SymGS performance, which gives

a low total HPCG performance of 0.62 Gflops. KHPCG shows a significant

performance drop, especially in SpMV andMG, where it falls below 0.08Gflops. The

bandwidth utilization is very low in that case, and also the low HPCG performance

of 0.08 Gflops, indicating it as ill-suited for the evaluated architecture.

Our Kokkos-based implementation, KoHPCG, outperforms other variants,

especially in MG performance and the performance drop recorded in WAXPBY.

MG peaks at 19.7 Gflops, with 5.49 Gflops on 643 and 4.97 Gflops on 1603 in

HPCG overall performance, KoHPCG performs better in overall HPCG and achieves

memory bandwidth utilization over 129 GB/s. These results highlight the efficacy of

the Kokkos programming model for performance portability and the major impact of

95

Figure 6.1 Comparison of performance (Gflops) and memory bandwidth (GB/s)
across different HPCG variants for problem sizes 643 and 1603, on single node and
1 MPI process with 68 threads. The Reference version corresponds to the original
HPCG v3.1 implementation. KHPCG [8] is an early Kokkos-based but it is limited
in scalability and stability. KoHPCG (OUR) is our Kokkos-based optimized version
of HPCG with the kernels (DDOT, WAXPBY, SpMV, SymGS, and MG) ported to
the Kokkos programming model, designed for performance portability.

the SymGS kernel on HPCG performance.

The Figure 6.2 shows a comparative performance analysis of Reference HPCG and

KoHPCG for SpMV, MG, and the overall HPCG benchmark, quantified in Gflops

across multi-node different configurations. HPCG required that at least one fourth

memory of the system should be used, so on KNL, we evaluated the results on 1603

96

Figure 6.2 Comparison of Gflops performance for SpMV, MG, and overall HPCG
on Intel KNL for a problem size of 1603 across different multi-node configurations.
TheKoHPCG implementation exhibits superior performance relative to the Reference
HPCG. Each configuration is represented in the format TP:X_N:Y_MN:Z_T:W,
where TP signifies the total number of MPI processes, N indicates the number of
nodes, MN represents the number of MPI processes per node, and T denotes the
number of OpenMP threads per process. The notation TP:40_N:2_MN:20_T:3
signifies 40 MPI processes allocated over 2 nodes, with 20 MPI processes per node
and 3 OpenMP threads per process. Results are sorted in ascending order based on
node count and MPI processes per node from left to right.

problem size on multi-node environment for 1, 2, 4, 8 and 16 nodes for different MPI

+ OpenMP settings. The graph illustrates the significant performance improvements

of KoHPCG over the Reference implementation.

The performance improvement of KoHPCG relative to the Reference HPCG for

a problem size of 1603 on Intel KNL demonstrate the improvement across the

computational kernels. These performace results are extracted from the HPCG

report. The MG exhibits a performance improvement of 17.3×. In DDOT, it

demonstrates a significant performance improvement of 4.65× across the evaluated

configurations. SpMV, although a critical and generally memory-bound kernel,

97

demonstrates a relatively modest improvement of 1.17×. Similarly, the WAXPBY

kernel exhibits ignorable improvement in some configurations, but on 8 and 16

nodes, its performance dropped, indicating that it is further required to optimize.

The MG consistently surpasses others kernels in improvement, with DDOT and

overall HPCG demonstrating significant improvement. The little and no performance

improvement of SpMV and WAXPBY suggests that further optimization may be

required. KoHPCG provides a substantial and scalable performance improvement

compared to the Reference implementation of HPCG.

6.2.3 Results on Skylake Scalable Processor (SKL)

Figure 6.3 Comparison of Gflops performance for SpMV, MG, and overall HPCG on
Intel SKL for a problem size of 1923 across different multi-node configurations.

Figure 6.3 shows the performance on problem size of 1923, For the SpMV kernel,

KoHPCG consistently outperforms the Reference with improvement in performance.

Similarly in the MG kernel, where KoHPCG demonstrates improvement, up to

5× particularly in higher nodes like TP:128_N:16, where performance improves

98

from 156.5 Gflops to 760.1 Gflops. For the overall HPCG performance, KoHPCG

continues to deliver substantial improvements across different configurations, often

doubling the performance of the Reference implementation.

The performance improvement trends of KoHPCG over Reference for HPCG

benchmark kernels DDOT, WAXPBY, SpMV, MG and overall HPCG performance

on the SKL system, evaluated across multiple problem sizes of 643, 1923, and

3203 on 1, 2, 4, 8, and 16 nodes. Which highlights the MG kernel as having the

substantial performance improvement upto 11.75×, followed by DDOT 7.71×, and

moderate improvements in SpMV 1.72× and HPCG 3.41×. WAXPBY demonstrates

a performance decline and is of 0.84×.

The parallelization strategy for SymGS significantly reduces data dependency

bottlenecks, but it experiences additional overhead from increased use of memory.

The current implementation of KoHPCG requires additional memory to transform

the original HPCG data structures into Kokkos-compatible formats. The original data

structures must remain unaltered to ensure appropriate benchmarking of the reference

implementations of the core computational kernels. Duplicate data structures are

required. This limitation affects our capacity to execute KoHPCG with increased

MPI process counts on larger problem sizes due to memory constraints of the system.

This is an ongoing work, and future efforts will focus on improving memory

efficiency and extending evaluation to GPU-based systems. Our evaluation revealed

that systems with just 96 GB of DDR memory performing better than the system

which using an extra 16 GB of High Bandwidth Memory (HBM) in HPCG

performance. Although the higher bandwidth of HBM, it did not yield improved

performance for memory-bound operations such as SpMV and SymGS. However,

the additional memory facilitated execution on a slightly higher number of MPI

99

processes.

The performance of the WAXPBY kernel is suboptimal in some configurations,

indicating a necessity for additional tuning. So far, KoHPCG has been tested on Intel

architectures, comprehensive validation on diverse platforms, including GPUs, is part

of our planned future work to evaluate its full portability and performance potential.

6.2.4 Results on GPU Based System

The GPU-based results were obtained on a system equipped with an Intel Core

i9-10920X CPU (24 cores) and NVIDIA GeForce RTX 2080 Ti GPU. The KoHPCG

benchmark was evaluated for problem sizes of 643, 963, 1283, and 1603, achieving

Gflops performances of 8.96, 9.46, 9.24, and 9.15, respectively. These results

were generated using a single MPI process and a single GPU. While the current

setup is limited by the absence of multi-GPU support, likely due to some Kokkos

configurational setup issues or missing device-aware adaptations in the code, these

results however demonstrate successful GPU-based execution and highlight the

portability of KoHPCG across heterogeneous architectures. We will address the

existing limitations by refining the Kokkos configuration and restructuring the code

to support scalable multi-GPU execution.

100

CHAPTER 7. Conclusion

This thesis introduced and implemented KoHPCG, a performance-portable and

optimized variant of the HPCG benchmark. To address the critical scalability

limitations of the original reference implementation, parallelizing the inherently

sequential Symmetric Gauss-Seidel (SymGS) kernel through the design and

evaluation of several algorithmic variants, including temporal blocking, wavefront-style

dependency scheduling, over-relaxation etc.

Through experimentation on KNL and Skylake (SKL) systems, KoHPCG

demonstrated improved scalability, better utilization of memory bandwidth, and

enhanced computational throughput. In particular, the over-relaxation variant

proved to be a compelling choice, offering simplicity in implementation and robust

performance. The developed SymGS variants preserved the numerical correctness,

while enabling effective use of shared-memory parallelism via OpenMP and Kokkos

execution abstractions.

A key contribution of this work is to develop parallel variant of SymGS and its

integration into a Kokkos-based framework including transformation of the core

computational kernel of HPCG into Kokkos, for performance portability across

heterogeneous architectures. Unlike prior efforts such as KHPCG, KoHPCG

supports multi-node, multi-threaded execution and resolves the limitations related

101

to parallelism and numerical stability.

The broader implication of this research lies in providing the HPC community with

a modernized, scalable, and portable benchmarking tool. It serves as a foundation

for further research in memory-bound kernel optimization and performance-portable

programming.

7.1 Future Research Directions

Looking ahead, several promising directions can further advance this research:

• GPU and Heterogeneous Platform Support: Extend KoHPCG to exploit

GPU architectures using Kokkos’ CUDA and HIP backends, and evaluate its

performance on GPU systems.

• Hybrid SymGS Strategies: Investigate combinations of temporal blocking

withmulticolor or algebraic coloring techniques to further reduce synchronization

overhead and improve data locality.

• Advanced Scheduling Techniques: Explore task-based parallelism and

asynchronous executionmodels usingKokkos to optimize communication-computation

overlap.

• BenchmarkGeneralization: Broaden the benchmark’ s capabilities to support

more realistic partial differential equation (PDE) systems by developing better

preconditioner and multigrid methods. Geometric multigrid methods can be

significantly improvedwith algebraicmultigridmethods. These will bring even

better convergence rates for grids and complex problem domains.

102

REFERENCES

[1] J. J. Dongarra, “The linpack benchmark: An explanation,” in International

Conference on Supercomputing. Springer, 1987, pp. 456–474.

[2] J. Dongarra, P. Luszczek, and M. Heroux, “HPCG technical specification,”

Sandia National Laboratories, Sandia Report SAND2013-8752, 2013.

[3] ——, “HPCG: one year later,” ISC14 Top500 BoF, vol. 818, 2014.

[4] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance

conjugate-gradient benchmark: A new metric for ranking high-performance

computing systems,” The International Journal of High Performance

Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.

[5] ——, “A new metric for ranking high-performance computing systems,”

National Science Review, vol. 3, no. 1, pp. 30–35, 2016.

[6] Kokkos Team, “Kokkos: Themanycore performance portability programming

model,” https://kokkos.org/, 2020, accessed: 2024-08-22.

[7] Z. Bookey, “Performance portable high performance conjugate gradients

benchmark,” All College Thesis, College of Saint Benedict/Saint John’s

103

https://kokkos.org/

University, 2016, accessed: 2024-08-14. [Online]. Available: https:

//digitalcommons.csbsju.edu/honors_thesis/12

[8] ——, “KHPCG 3.0,” https://github.com/zabookey/KHPCG3.0, 2016,

accessed: 2024-02-19.

[9] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns,”

Journal of parallel and distributed computing, vol. 74, no. 12, pp. 3202–3216,

2014.

[10] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood,

R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez et al., “Kokkos 3:

Programming model extensions for the exascale era,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2021.

[11] C. Ulmer, “Sand2021-1220: Benchmarking the nvidia a100 graphics

processing unit for high-performance computing and data analytics

workloads,” Sandia National Laboratories, Tech. Rep., 2021, accessed:

2024-08-14. [Online]. Available: https://www.craigulmer.com/data/2021/

SAND2021-1220_uur.pdf

[12] M. A. Heroux and J. Dongarra, “Toward a new metric for ranking

high performance computing systems.” Sandia National Lab.(SNL-NM),

Albuquerque, NM (United States);University of Tennessee, Tech. Rep., 2013.

[13] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm, “Optimizing a

conjugate gradient solver with non-blocking collective operations,” Parallel

Computing, vol. 33, no. 9, pp. 624–633, 2007.

104

https://digitalcommons.csbsju.edu/honors_thesis/12
https://digitalcommons.csbsju.edu/honors_thesis/12
https://github.com/zabookey/KHPCG3.0
https://www.craigulmer.com/data/2021/SAND2021-1220_uur.pdf
https://www.craigulmer.com/data/2021/SAND2021-1220_uur.pdf

[14] G. Meurant, “Multitasking the conjugate gradient method on the cray x-mp/

48,” Parallel Computing, vol. 5, no. 3, pp. 267–280, 1987.

[15] A. T. Chronopoulos and C. W. Gear, “S-step iterative methods for symmetric

linear systems,” Journal of Computational and Applied Mathematics, vol. 25,

no. 2, pp. 153–168, 1989.

[16] V. Eijkhout, Lapack working note 51: Qualitative properties of the conjugate

gradient and lanczos methods in a matrix framework. Citeseer, 1992.

[17] E. D’Azevedo, V. Eijkhout, and C. Romine, “Lapack working note 56:

Reducing communication costs in the conjugate gradient algorithm on

distributed memory multiprocessors,” University of Tennessee, Knoxville,

USA, Technical Report CS-93-185, 1993.

[18] J. Dongarra and V. Eijkhout, “Finite-choice algorithm optimization in

conjugate gradients,” Computer Science Technical Report UT-CS-03-502,

University of Tennessee, Knoxville, 2003.

[19] P. Ghysels and W. Vanroose, “Hiding global synchronization latency in the

preconditioned conjugate gradient algorithm,” Parallel Computing, vol. 40,

no. 7, pp. 224–238, 2014.

[20] M. Tiwari and S. Vadhiyar, “Efficient executions of pipelined conjugate

gradient method on heterogeneous architectures,” arXiv preprint

arXiv:2105.06176, 2021.

[21] A. Zeni, K. O’ Brien, M. Blott, and M. D. Santambrogio, “Optimized

implementation of the HPCG benchmark on reconfigurable hardware,” in

European Conference on Parallel Processing. Springer, 2021, pp. 616–630.

105

[22] C. Edwards, C. Trott et al., “Kokkos tutorial: Kokkos kernels,”

https://indico.math.cnrs.fr/event/12037/attachments/5040/8157/

KokkosTutorial_08_KokkosKernels.pdf, 2024, accessed May 2025.

[23] J. Park, A. Kleymenov, M. Smelyanskiy, and V. Pirogov, “HPCG on

intel architecture update nov 2015,” https://www.hpcg-benchmark.org/

downloads/sc15/sc15-hpcg-bof-intel.pdf, 2015, [Accessed 23-08-2024].

[24] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D. Kalamkar,

X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey, “Efficient shared-memory

implementation of high-performance conjugate gradient benchmark and

its application to unstructured matrices,” in SC’14: Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2014, pp. 945–955.

[25] Intel Corporation, “Intel math kernel library release

notes and new features,” https://www.intel.com/

content/www/us/en/developer/articles/release-notes/

intel-math-kernel-library-release-notes-and-new-features.html, 2015,

accessed: 2024-08-26.

[26] I. Labs, “Spmp: A high-performance sparse matrix library,” https://github.

com/IntelLabs/SpMP, 2016, accessed: 2024-08-26.

[27] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D. Kalamkar,

M. M. A. Patwary, V. Pirogov, P. Dubey, X. Liu, C. Rosales et al.,

“Optimizations in a high-performance conjugate gradient benchmark for

ia-based multi-and many-core processors,” The International Journal of High

Performance Computing Applications, vol. 30, no. 1, pp. 11–27, 2016.

106

https://indico.math.cnrs.fr/event/12037/attachments/5040/8157/KokkosTutorial_08_KokkosKernels.pdf
https://indico.math.cnrs.fr/event/12037/attachments/5040/8157/KokkosTutorial_08_KokkosKernels.pdf
https://www.hpcg-benchmark.org/downloads/sc15/sc15-hpcg-bof-intel.pdf
https://www.hpcg-benchmark.org/downloads/sc15/sc15-hpcg-bof-intel.pdf
https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-math-kernel-library-release-notes-and-new-features.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-math-kernel-library-release-notes-and-new-features.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-math-kernel-library-release-notes-and-new-features.html
https://github.com/IntelLabs/SpMP
https://github.com/IntelLabs/SpMP

[28] Q. Pan and X. Wang, “Performance evaluation and optimization of

HPCG benchmark on cpu+ mic platform,” International Journal of Hybrid

Information Technology, vol. 9, no. 11, pp. 239–254, 2016.

[29] F. Yuan, X. Yang, S. Li, D. Dong, C. Huang, and Z. Wang, “Optimizing

multi-grid preconditioned conjugate gradient method on multi-cores,” IEEE

Transactions on Parallel and Distributed Systems, 2024.

[30] D. Ruiz, F. Mantovani, M. Casas, J. J. Labarta Mancho, and F. Spiga, “The

HPCG benchmark: analysis, shared memory preliminary improvements and

evaluation on an arm-based platform,” , 2018, technical Report.

[31] D. Ruiz, F. Spiga, M. Casas, M. Garcia-Gasulla, and F. Mantovani,

“Open-source shared memory implementation of the HPCG benchmark:

Analysis, improvements and evaluation on cavium thunderx2,” in 2019

International Conference on High Performance Computing and Simulation

(HPCS). IEEE, 2019, pp. 225–232.

[32] A. Scolari and A.-J. Yzelman, “Effective implementation of the high

performance conjugate gradient benchmark on graphblas,” in 2023 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). IEEE, 2023, pp. 216–225.

[33] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,

D. Hutchison, M. Kumar, A. Lumsdaine, H.Meyerhenke et al., “Mathematical

foundations of the graphblas,” in 2016 IEEE High Performance Extreme

Computing Conference (HPEC). IEEE, 2016, pp. 1–9.

[34] A. Yzelman, D. Di Nardo, J. Nash, and W. Suijlen, “A c++ graphblas:

specification, implementation, parallelisation, and evaluation,” Preprint,

107

vol. 58, 2020.

[35] A. Scolari and A.-J. Yzelman, “Alp/ graphblas,” https://github.com/

Algebraic-Programming/ALP, 2023, accessed: 2024-08-30.

[36] X. Yang, S. Li, F. Yuan, D. Dong, C. Huang, and Z. Wang, “Optimizing

multi-grid computation and parallelization on multi-cores,” in Proceedings of

the 37th International Conference on Supercomputing, 2023, pp. 227–239.

[37] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid poisson solver

for fluids simulation on large grids.” in Symposium on Computer Animation,

vol. 65, 2010, p. 74.

[38] K. Kumahata, K. Minami, and N. Maruyama, “High-performance conjugate

gradient performance improvement on the k computer,” The International

Journal of High Performance Computing Applications, vol. 30, no. 1, pp.

55–70, 2016.

[39] C. Liao, J. Chen, W. Han, H. Cao, Z. Su, W. Yin, and H. An, “A

hierarchical grid algorithm for accelerating high-performance conjugate

gradient benchmark on sunway many-core processor,” in Proceedings of the

3rd International Conference on Communication and Information Processing,

2017, pp. 361–368.

[40] Y. Ao, C. Yang, F. Liu, W. Yin, L. Jiang, and Q. Sun, “Performance

optimization of the HPCG benchmark on the sunway taihulight

supercomputer,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 15, no. 1, pp. 1–20, 2018.

[41] Q. Zhu, H. Luo, C. Yang, M. Ding, W. Yin, and X. Yuan, “Enabling and

108

https://github.com/Algebraic-Programming/ALP
https://github.com/Algebraic-Programming/ALP

scaling the HPCG benchmark on the newest generation sunway supercomputer

with 42 million heterogeneous cores,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, 2021, pp. 1–13.

[42] Q. Zhu, H. Luo, and C. Yang, “Reference and optimized versions of HPCG

Benchmark,”Aug. 2021. [Online].Available: https://doi.org/10.5281/zenodo.

5286616

[43] K. Komatsu, R. Egawa, Y. Isobe, R. Ogata, H. Takizawa, and H. Kobayashi,

“An approach to the highest efficiency of the HPCG benchmark on the sx-ace

supercomputer,” in Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis (SC15), Poster, 2015, pp. 1–2.

[44] S. Momose, T. Hagiwara, Y. Isobe, and H. Takahara, “The brand-new vector

supercomputer, sx-ace,” in Supercomputing: 29th International Conference,

ISC 2014, Leipzig, Germany, June 22-26, 2014. Proceedings 29. Springer,

2014, pp. 199–214.

[45] E. F. D’ Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized sparse matrix

multiply for compressed row storage format,” inComputational Science–ICCS

2005: 5th International Conference, Atlanta, GA, USA, May 22-25, 2005.

Proceedings, Part I 5. Springer, 2005, pp. 99–106.

[46] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on

cuda,” Nvidia Technical Report NVR-2008-004, Nvidia Corporation, Tech.

Rep., 2008.

[47] T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic block multi-color

ordering method for parallel multi-threaded sparse triangular solver in iccg

109

https://doi.org/10.5281/zenodo.5286616
https://doi.org/10.5281/zenodo.5286616

method,” in 2012 IEEE 26th International Parallel andDistributed Processing

Symposium. IEEE, 2012, pp. 474–483.

[48] Y. OYANAGI, “Hyperplane vs. multicolor vectorization of incomplete lu

preconditioning,” Journal of Information Processing, vol. 2, no. 1, 1987.

[49] S. Fujino, M. Mori, and T. Takeuchi, “Performance of hyperplane ordering

on vector computers,” Journal of Computational and Applied Mathematics,

vol. 38, no. 1-3, pp. 125–136, 1991.

[50] C. Gómez, F. Mantovani, E. Focht, and M. Casas, “HPCG on long-vector

architectures: Evaluation and optimization on nec sx-aurora and risc-v,”

Future Generation Computer Systems, vol. 143, pp. 152–162, 2023.

[51] C. Gómez, F.Mantovani, E. Focht, andM. Casas, “Ve-native port of the HPCG

benchmark,” https://github.com/efocht/hpcg-ve-open, 2021.

[52] E. Vermij, L. Fiorin, C. Hagleitner, and K. Bertels, “Boosting the efficiency of

HPCG and graph500 with near-data processing,” in 2017 46th International

Conference on Parallel Processing (ICPP). IEEE, 2017, pp. 31–40.

[53] W. J. Starke, J. Stuecheli, D. Daly, J. Dodson, F. Auernhammer, P. Sagmeister,

G. L. Guthrie, C. F. Marino, M. Siegel, and B. Blaner, “The cache and memory

subsystems of the ibm power8 processor,” IBM Journal of Research and

Development, vol. 59, no. 1, pp. 3–1, 2015.

[54] Graph 500, “Graph 500 benchmark,” https://graph500.org/, 2017, accessed:

2024-08-13.

[55] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed

memory systems,” in Proceedings of 2011 International Conference for High

110

https://github.com/efocht/hpcg-ve-open
https://graph500.org/

Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[56] E. Phillips and M. Fatica, “A cuda implementation of the high performance

conjugate gradient benchmark,” in International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computer

Systems. Springer, 2014, pp. 68–84.

[57] ——, “Optimizing the high performance conjugate gradient benchmark

on gpus,” 2014. [Online]. Available: https://developer.nvidia.com/blog/

optimizing-high-performance-conjugate-gradient-benchmark-gpus/

[58] M. Luby, “A simple parallel algorithm for the maximal independent set

problem,” in Proceedings of the seventeenth annual ACM symposium on

Theory of computing, 1985, pp. 1–10.

[59] M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,” SIAM

Journal on Scientific Computing, vol. 14, no. 3, pp. 654–669, 1993.

[60] J. Cohen and P. Castonguay, “Efficient graph matching and coloring on the

gpu,” in GPU Technology Conference, 2012, pp. 1–10.

[61] NVIDIA, “cusparse documentation,” https://docs.nvidia.com/cuda/

cusparse/, n.a, accessed: 2024-08-13.

[62] O. R. N. Laboratory, “Cray xk7 system at oak ridge national laboratory,”

2024, accessed: 2024-08-13. [Online]. Available: https://www.ornl.gov

[63] S. N. S. Centre, “Cray xc30 system at the swiss national supercomputing

centre,” 2024, accessed: 2024-08-13. [Online]. Available: https://www.cscs.

ch

111

https://developer.nvidia.com/blog/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
https://developer.nvidia.com/blog/optimizing-high-performance-conjugate-gradient-benchmark-gpus/
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://www.ornl.gov
https://www.cscs.ch
https://www.cscs.ch

[64] A. Bland, W. Joubert, D. Maxwell, N. Podhorszki, J. Rogers, G. Shipman, and

A. Tharrington, “Titan: 20-petaflop cray xk7 at oak ridge national laboratory,”

in Contemporary High Performance Computing. Chapman and Hall/CRC,

2017, pp. 399–420.

[65] S. R. Alam, L. Gilly, C. J. McMurtrie, and T. C. Schulthess, “Cscs and the piz

daint system,” in Contemporary High Performance Computing. CRC Press,

2019, pp. 149–173.

[66] E. Phillips and M. Fatica, “Performance analysis of the high-performance

conjugate gradient benchmark on gpus,” The International Journal of High

Performance Computing Applications, vol. 30, no. 1, pp. 28–38, 2016.

[67] E. Rothberg and A. Gupta, “Parallel iccg on a hierarchical memory

multiprocessor—addressing the triangular solve bottleneck,” Parallel

Computing, vol. 18, no. 7, pp. 719–741, 1992.

[68] U. M. Yang et al., “Boomeramg: A parallel algebraic multigrid solver and

preconditioner,” Applied Numerical Mathematics, vol. 41, no. 1, pp. 155–177,

2002.

[69] J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying

synchronization for high-performance shared-memory sparse triangular

solver,” in Supercomputing: 29th International Conference, ISC 2014,

Leipzig, Germany, June 22-26, 2014. Proceedings 29. Springer, 2014, pp.

124–140.

[70] X. Zhang, C. Yang, F. Liu, Y. Liu, and Y. Lu, “Optimizing and scaling HPCG

on tianhe-2: early experience,” in Algorithms and Architectures for Parallel

112

Processing: 14th International Conference, ICA3PP 2014, Dalian, China,

August 24-27, 2014. Proceedings, Part I 14. Springer, 2014, pp. 28–41.

[71] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning sparse

matrix-vector multiplication for gpu architectures,” in High Performance

Embedded Architectures and Compilers: 5th International Conference,

HiPEAC 2010, Pisa, Italy, January 25-27, 2010. Proceedings 5. Springer,

2010, pp. 111–125.

[72] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande, B. Van Straalen,

M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, and L. Oliker, “Optimization

of geometric multigrid for emerging multi-and manycore processors,” in

SC’12: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.

[73] Y. Liu, X. Zhang, C. Yang, F. Liu, and Y. Lu, “Accelerating HPCG on tianhe-2:

a hybrid cpu-mic algorithm,” in 2014 20th IEEE International Conference on

Parallel and Distributed Systems (ICPADS). IEEE, 2014, pp. 542–551.

[74] C. Chen, Y. Du, H. Jiang, K. Zuo, and C. Yang, “Hpcg: preliminary

evaluation and optimization on tianhe-2 cpu-only nodes,” in 2014 IEEE 26th

International Symposium on Computer Architecture and High Performance

Computing. IEEE, 2014, pp. 41–48.

[75] F. Liu, C. Yang, Y. Liu, X. Zhang, and Y. Lu, “Reducing communication

overhead in the high performance conjugate gradient benchmark on tianhe-2,”

in 2014 13th International Symposium on Distributed Computing and

Applications to Business, Engineering and Science. IEEE, 2014, pp. 13–18.

113

[76] Y. Liu, C. Yang, F. Liu, X. Zhang, Y. Lu, Y. Du, C. Yang, M. Xie, and X. Liao,

“623 tflop/s HPCG run on tianhe-2: Leveraging millions of hybrid cores,” The

International Journal of High Performance Computing Applications, vol. 30,

no. 1, pp. 39–54, 2016.

[77] R. Steiger, “HPCG for fpgas: A data-centric approach,” B.S. thesis, ETH

Zurich, 2022.

[78] J. Dongarra, M. Heroux, and P. Luszczek, “HPCG benchmark,”

2019, accessed: 2024-01-21. [Online]. Available: https://github.com/

hpcg-benchmark/hpcg

[79] C. B. Cristiano Malossi, Panagiotis Chatzidoukas, “Ibm hpcg,” https://

github.com/IBM/HPCG, IBM Research, 2018, accessed: 2024-04-11.

[80] Intel, “Getting started with intel cpu optimized hpcg,” https://www.

intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/

2024-1/getting-started-with-intel-cpu-optimized-hpcg.html, 2015,

accessed: 2024-03-22.

[81] N. John C. Linford, “Arm HPCG benchmarks,” https://gitlab.com/

arm-hpc/benchmarks/hpcg, 2017, accessed: 2024-06-17.

[82] D. Ruiz, “HPCG for arm,” https://github.com/ARM-software/HPCG_for_

Arm, 2020, accessed: 2024-08-01.

[83] Intel, “Versions of the intel gpu optimized hpcg,” https://www.intel.

com/content/www/us/en/docs/onemkl/developer-guide-linux/

2024-1/versions-of-the-intel-gpu-optimized-hpcg.html, 2020, accessed:

2024-01-09.

114

https://github.com/hpcg-benchmark/hpcg
https://github.com/hpcg-benchmark/hpcg
https://github.com/IBM/HPCG
https://github.com/IBM/HPCG
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-1/getting-started-with-intel-cpu-optimized-hpcg.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-1/getting-started-with-intel-cpu-optimized-hpcg.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-1/getting-started-with-intel-cpu-optimized-hpcg.html
https://gitlab.com/arm-hpc/benchmarks/hpcg
https://gitlab.com/arm-hpc/benchmarks/hpcg
https://github.com/ARM-software/HPCG_for_Arm
https://github.com/ARM-software/HPCG_for_Arm
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-1/versions-of-the-intel-gpu-optimized-hpcg.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-1/versions-of-the-intel-gpu-optimized-hpcg.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-1/versions-of-the-intel-gpu-optimized-hpcg.html

[84] N. S. Mohammad Almasri, “Nvidia hpc benchmarks,” https://github.com/

NVIDIA/nvidia-hpcg, NVIDIA, 2023, accessed: 2024-07-05.

[85] NVIDIA, “Nvidia hpc benchmarks container,” 2024, accessed: 2024-09-02.

[Online]. Available: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/

hpc-benchmarks

[86] AMD, “rochpcg: HPCG benchmark based on rocm platform,” https://

github.com/ROCm/rocHPCG, 2020, accessed: 2024-08-02.

[87] A. Zeni, K. O’Brien, M. Blott, and M. D. Santambrogio, “HPCG fpga,” https:

//github.com/Xilinx/HPCG_FPGA, 2019, accessed: 2024-05-28.

[88] “HPCG benchmark,” https://www.hpcg-benchmark.org/, 2013, accessed:

2024-02-15.

[89] D. Ruiz, “Parallelizing hpcg’s main kernels,” 2018, accessed: 2024-09-02.

[Online]. Available: https://community.arm.com/arm-community-blogs/b/

high-performance-computing-blog/posts/parallelizing-hpcg

[90] I. P. S. P. Group, “High performance conjugate gradient benchmark (hpcg)

for ibm power9 systems,” November 2018, sC18, Dallas, Texas. [Online].

Available: https://www.hpcg-benchmark.org/downloads/sc18/HPCG_IBM_

P9_v05.pdf

[91] X. Lulu and E. Strohmaier, “Optimizing HPCG for amd processors,” 2019,

accessed: 2024-09-02. [Online]. Available: https://www.hpcg-benchmark.

org/downloads/sc19/HPCG-AMD-Lulu.pdf

[92] AMD, “Optimizing HPCG with openmp on amd processors,” 2020,

accessed: 2024-09-02. [Online]. Available: https://www.iwomp.org/

115

https://github.com/NVIDIA/nvidia-hpcg
https://github.com/NVIDIA/nvidia-hpcg
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://github.com/ROCm/rocHPCG
https://github.com/ROCm/rocHPCG
https://github.com/Xilinx/HPCG_FPGA
https://github.com/Xilinx/HPCG_FPGA
https://www.hpcg-benchmark.org/
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/parallelizing-hpcg
https://community.arm.com/arm-community-blogs/b/high-performance-computing-blog/posts/parallelizing-hpcg
https://www.hpcg-benchmark.org/downloads/sc18/HPCG_IBM_P9_v05.pdf
https://www.hpcg-benchmark.org/downloads/sc18/HPCG_IBM_P9_v05.pdf
https://www.hpcg-benchmark.org/downloads/sc19/HPCG-AMD-Lulu.pdf
https://www.hpcg-benchmark.org/downloads/sc19/HPCG-AMD-Lulu.pdf
https://www.iwomp.org/wp-content/uploads/iwomp-2020-Sponsor-AMD.pdf
https://www.iwomp.org/wp-content/uploads/iwomp-2020-Sponsor-AMD.pdf

wp-content/uploads/iwomp-2020-Sponsor-AMD.pdf

[93] J. Park and M. Smelyanskiy, “Optimizing gauss–seidel smoother in hpcg,” in

ASCR HPCG Workshop, 2014.

[94] K. Kumahata, K. Minami, and N. Maruyama, “HPCG on the k computer,” in

ASCR HPCG Workshop, 2014.

[95] K. Kumahata and K. Minami, “HPCG performance improvement on the k

computer,” in Presentation at Supercomputers Conference (SC’14), 2014.

[96] S. Kopysov, N. Nedozhogin, and L. Tonkov, “Parallel pipelined conjugate

gradient algorithm on heterogeneous platforms,” International Journal of

Computer and Information Engineering, vol. 16, no. 10, pp. 423–430, 2022.

[97] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication

on throughput-oriented processors,” in Proceedings of the conference on high

performance computing networking, storage and analysis, 2009, pp. 1–11.

[98] J. Gao, B. Liu, W. Ji, and H. Huang, “A systematic literature survey of sparse

matrix-vector multiplication,” arXiv preprint arXiv:2404.06047, 2024.

[99] D. Bozdağ, U. Catalyurek, A. H. Gebremedhin, F. Manne, E. G. Boman, and

F. Özgüner, “A parallel distance-2 graph coloring algorithm for distributed

memory computers,” in International conference on high performance

computing and communications. Springer, 2005, pp. 796–806.

[100] J. R. Blair and F. Manne, “An efficient self-stabilizing distance-2 coloring

algorithm,” Theoretical Computer Science, vol. 444, pp. 28–39, 2012.

116

https://www.iwomp.org/wp-content/uploads/iwomp-2020-Sponsor-AMD.pdf

[101] T. Iwashita and M. Shimasaki, “Algebraic multicolor ordering for parallelized

iccg solver in finite-element analyses,” IEEE transactions on magnetics,

vol. 38, no. 2, pp. 429–432, 2002.

[102] T. Mo and R. Li, “Accelerating stencil computation on gpgpu by novel

mapping method between the global memory and the shared memory,”

Computing and Informatics, vol. 37, no. 3, pp. 533–552, 2018.

[103] G. Sornet, F. Dupros, and S. Jubertie, “A multi-level optimization strategy

to improve the performance of stencil computation,” Procedia Computer

Science, vol. 108, pp. 1083–1092, 2017.

[104] S. M. F. Rahman, Q. Yi, and A. Qasem, “Understanding stencil code

performance on multicore architectures,” in Proceedings of the 8th ACM

International Conference on Computing Frontiers, 2011, pp. 1–10.

[105] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick,

“Auto-tuning the 27-point stencil for multicore,” in In Proc. iWAPT2009: The

Fourth International Workshop on Automatic Performance Tuning, vol. 70,

2009.

[106] J. Brown, “Scalable reconfigurable dataflow architectures for the high

performance conjugate gradient benchmark,” Master’s thesis, University of

California, Davis, 2024.

[107] L. Sinjorgo, “Multicoloring of highly symmetric graphs,” Master’s thesis,

Tilburg University, The Netherlands, 2021.

[108] M. M. Halldórsson and G. Kortsarz, “Multicoloring: Problems and

techniques,” in International Symposium on Mathematical Foundations of

117

Computer Science. Springer, 2004, pp. 25–41.

[109] M. da Silva Menezes, P. H. L. Silva, J. P. C. de Oliveira, R. L. Marques, and

I. Mezzomo, “A parallel iterative hybrid gauss-jacobi-seidel method,” Journal

of Computational and Applied Mathematics, p. 116629, 2025.

[110] A. Ahmadi, F. Manganiello, A. Khademi, and M. C. Smith, “A parallel

jacobi-embedded gauss-seidel method,” IEEE Transactions on Parallel and

Distributed Systems, vol. 32, no. 6, pp. 1452–1464, 2021.

[111] X. Yang, N. Wang, and L. Xu, “A parallel gauss-seidel method for

convex problems with separable structure,” Numerical Algebra, Control and

Optimization, vol. 10, no. 4, pp. 557–570, 2020.

[112] V. A. Ulmeanu and A. P. Ulmeanu, “Parallelised hybrid heuristics in numerical

linear algebra for data science,” Available at SSRN 4437899.

[113] D. Xie and L. Adams, “New parallel sor method by domain partitioning,”

SIAM Journal on Scientific Computing, vol. 20, no. 6, pp. 2261–2281, 1999.

[114] D. Xie, “A new block parallel sor method and its analysis,” SIAM Journal on

Scientific Computing, vol. 27, no. 5, pp. 1513–1533, 2006.

[115] ——, “New parallel symmetric sor preconditioners by multi-type

partitioning,” International Journal of Computer Mathematics, vol. 86,

no. 2, pp. 287–300, 2009.

[116] D. M. Young, Iterative solution of large linear systems. Elsevier, 2014.

[117] KISTI, “National supercomputing center - nurion,” https://www.ksc.re.kr/

eng/resources/nurion, 2018, accessed: 2024-08-05.

118

https://www.ksc.re.kr/eng/resources/nurion
https://www.ksc.re.kr/eng/resources/nurion

	목차
	ABSTRACT IN ENGLISH 0
	ABSTRACT IN KOREAN 0
	CHAPTER 1. Introduction 1
	1.1 Motivation 3
	1.2 Problem Statement 4
	1.3 Research Objectives and Contributions 5
	1.4 Thesis Organization 6
	CHAPTER 2. Background 8
	2.1 HPCG 8
	2.1.1 Preconditioned Conjugate Gradient Method 8
	2.1.2 HPCG Execution Flow Process 10
	2.1.3 Problem Setup in HPCG 12
	2.1.4 Properties 14
	2.1.5 Optimization Constraints 15
	2.1.6 Core Kernels in HPCG 18
	2.2 Kokkos EcoSystem 22
	2.2.1 Programming Model 23
	2.2.2 Packages/Repositories 25
	CHAPTER 3. Literature Review 27
	3.1 HPCG Optimization Techniques 27
	3.1.1 CPU-Based Systems 28
	3.1.2 GPU-Based Systems 36
	3.1.3 Hybrid Architectures 37
	3.1.4 Other Architectures and Environments 39
	3.1.5 HPCG Benchmark Implementation Variants 41
	3.1.6 Summary 43
	3.1.7 Supplementary Influential Works 44
	CHAPTER 4. Technique and Trends in HPCG 46
	4.1 Data Formats and Storage Strategies 46
	4.1.1 Common Sparse Matrix Formats 46
	4.1.2 Novel Data Structures for HPCG 48
	4.2 Parallelization Optimization Techniques 50
	4.2.1 Coloring 50
	4.2.2 Multi Level Task Dependency Graph 55
	4.2.3 Hyperplane 56
	4.2.4 Hierarchical Grid (HG) 56
	4.2.5 Two-level Blocking Scheme 57
	4.2.6 Block Multi-Color Scheduling (BMC) 58
	CHAPTER 5. Parallel Implementation of Symmetric Gauss–Seidel (SymGS) Variants 61
	5.1 Reference SymGS and its Parallel Variants 61
	5.2 Our Designed Variants 63
	5.2.1 Temporal Block SymGS 63
	5.2.2 Over Relaxation SymGS 63
	5.2.3 Wavefront SymGS 67
	5.3 Experiments and Results 68
	5.3.1 Methodology 68
	5.3.2 Settings 69
	5.3.3 Performance Metrics 70
	5.3.4 Results on Knights Landing (KNL) 72
	5.3.5 Results on Skylake (SKL) 81
	5.4 Observations and Discussion 86
	5.4.1 Parallelism 87
	CHAPTER 6. KoHPCG High-Performance Conjugate Gradient Benchmark Program on Kokkos Performance Portability Framework 90
	6.1 Kokkos-Based Implementation 91
	6.2 Experiments and Results 94
	6.2.1 Experimental Setup 94
	6.2.2 Results on Knights Landing (KNL) 95
	6.2.3 Results on Skylake Scalable Processor (SKL) 98
	6.2.4 Results on GPU Based System 100
	CHAPTER 7. Conclusion 101
	7.1 Future Research Directions 102
	REFERENCES 103

